• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Datta Lab

  • Research
  • The Basics
  • Academics
  • Lab Members
  • Life in the Lab
  • Publications
  • Links
  • Contact

Life in the Lab

February 3, 1999

Cellular survival: a play in three Akts.

Datta SR, Brunet A and Greenberg ME. (1999)

Cellular survival: a play in three Akts.

Genes & Dev. 13: 2905-2927.

The programmed cell death that occurs as part of normal mammalian development was first observed nearly a century ago (Collin 1906). It has since been established that approximately half of all neurons in the neuroaxis and >99.9% of the total number of cells generated during the course of a human lifetime go on to die through a process of apoptosis (for review, see Datta and Greenberg 1998; Vaux and Korsmeyer 1999). The induction of developmental cell death is a highly regulated process and can be suppressed by a variety of extracellular stimuli. The purification in the 1950s of the nerve growth factor (NGF), which promotes the survival of sympathetic neurons, set the stage for the discovery that peptide trophic factors promote the survival of a wide variety of cell types in vitro and in vivo (Levi-Montalcini 1987). The profound biological consequences of growth factor (GF) suppression of apoptosis are exemplified by the critical role of target-derived neurotrophins in the survival of neurons and the maintenance of functional neuronal circuits. (Pettmann and Henderson 1998). Recently, the ability of trophic factors to promote survival have been attributed, at least in part, to the phosphatidylinositide 3′-OH kinase (PI3K)/c-Akt kinase cascade. Several targets of the PI3K/c-Akt signaling pathway have been recently identified that may underlie the ability of this regulatory cascade to promote survival. These substrates include two components of the intrinsic cell death machinery, BAD and caspase 9, transcription factors of the forkhead family, and a kinase, IKK, that regulates the NF-κB transcription factor. This article reviews the mechanisms by which survival factors regulate the PI3K/c-Akt cascade, the evidence that activation of the PI3K/c-Akt pathway promotes cell survival, and the current spectrum of c-Akt targets and their roles in mediating c-Akt-dependent cell survival.

Posted by

« Newer Posts
Older Post »

Primary Sidebar

Blog Archive

  • June 2022
  • January 2022
  • December 2021
  • December 2020
  • November 2020
  • October 2020
  • August 2020
  • May 2020
  • April 2020
  • March 2020
  • January 2020
  • December 2019
  • November 2019
  • August 2019
  • June 2019
  • October 2018
  • July 2017
  • June 2017
  • May 2017
  • April 2017
  • February 2017
  • December 2016
  • November 2016
  • October 2016
  • July 2016
  • June 2016
  • April 2016
  • March 2016
  • December 2015
  • October 2015
  • September 2015
  • May 2015
  • October 2014
  • January 2014
  • January 2013
  • October 2012
  • June 2012
  • May 2012
  • February 2012
  • December 2011
  • October 2011
  • August 2011
  • July 2011
  • April 2011
  • March 2011
  • February 2011
  • January 2011
  • November 2010
  • October 2010
  • September 2010
  • July 2010

HISTORY SHOWS AGAIN AND AGAIN HOW NATURE POINTS OUT THE FOLLY OF MEN – “GODZILLA,” BLUE OYSTER CULT

Sandeep Robert Datta, MD, Ph.D Department of Neurobiology Harvard Medical School