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SUMMARY

Animals achieve high-level goals by sequencing low-level actions. This transformation is best understood in
structured tasks that impose a specific mapping between goals and actions. However, it remains unclear
whether spontaneous behavior is similarly organized in the service of identifiable goals or how it might be
supported by brain regions responsible for goal-oriented behavior, such as the prefrontal cortex (PFC).
Here, we show that low-level actions in freely exploring mice are hierarchically organized into seconds-
long behavioral states that correspond to task-like programs of behavior. These persistent states structure
neural activity in the PFC, which preferentially encodes the identity of states relative to low-level behavioral
features and shapes which states are expressed in a given context. These findings argue that spontaneous
behavior is organized as a succession of self-directed tasks and identify principles of neural control that are

common to structured tasks and spontaneous exploration.

INTRODUCTION

The brain translates goals into actions. Systems neuroscience
typically studies this transformation through structured tasks in
which animals generate specific actions (e.qg., licking left or right)
to earn rewards." In this framework, movements linked to reward
are considered purposive.?® Evidence from such tasks suggests
that goal-oriented behaviors rely on the prefrontal cortex (PFC),
which encodes key information about context-, task-, and value-
related variables.*'® In contrast, when animals act spontane-
ously—as they do most of the time in the natural world—it is
not obvious whether actions are organized around specific goals
or whether the PFC similarly encodes task-related information. '®

Inferring the purpose of behavior is challenging because most
low-level actions are compatible with many high-level goals.’”"'®
For example, mice exploring an open field can establish home
bases, plan escape routes, and attend to novel objects and
odors—all of which employ common actions (e.g., running, sniff-
ing, and rearing) that might also occur in the absence of a spe-
cific goal."®?? Consistent with the idea that spontaneous
behavior is not always goal oriented, PFC lesions have little ef-
fect on open-field exploration, at least when measured using
conventional metrics.?*?’

One strategy for connecting low-level actions to high-level
goals arises from ethology, which uses the grouping of actions
over time to illuminate their functions.?®?° An animal might

crouch, stalk, and sprint while hunting, for example, but burrow
and manipulate bedding to build a nest.*® This organization
leaves a statistical signature: frequently co-occurring move-
ments are likely to serve the same goal, and sudden shifts be-
tween groups of movements can mark when one goal succeeds
another.®° While a recent explosion of machine learning tools
has given us unprecedented access to animals’ low-level
movements, including the sub-second behavioral motifs (or
“syllables”) that compose mouse behavior,>'™** we currently
lack tools for identifying behavioral states on longer
timescales.*

Given such a tool, several criteria would, if fulfilled, indicate
that the identified states reflect goal-directed tasks. First, each
state should include movements that are prima facie related to
a task. Second, the states expressed in a given context should
depend on available affordances®® (i.e., elements of the environ-
ment that allow some form of interaction). Finally, information
about states and corresponding task-related variables should
be present in brain regions that support goal-directed behavior,
such as the PFC.*1"12.14.15:36 |ndeed it is sometimes possible to
infer the structure of a task a priori from PFC recordings, as
recently demonstrated in rats trained to play hide-and-seek.®’
Furthermore, in social contexts, PFC neurons represent spatial
location, social proximity, and conspecific actions, all of which
are key to effective social behavior.**** However, there have
been few recordings of the PFC outside of structured tasks or
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Figure 1. Behavioral states capture the higher-order structure in exploratory behavior

(A) Schematic of the arena used for behavioral recordings.

(B) Schematic describing MoSeq. Pose trajectories (bottom) are determined by syllables (middle), which transition with fixed probabilities (top).

(C) Example syllable sequence. The raster shows which syllable (row) is expressed at each time point (column).|

(D) Mutual information (MI) between syllables at a range of temporal lags, shown for real data (red), Markov model simulations (black), and shuffled data (gray).
Line and shading indicate median and interquartile interval across recordings (n = 31). Syllables were kinematically clustered for Ml computation to prevent

sparsity-related artifacts.

(E) Schematic describing shMoSeq. A chain of behavioral states (top) specifies transition probabilities between syllables (middle), which govern pose (bottom).

(F) As (D), here comparing real data (red) to shMoSeq simulations (black).

(G) Ml between behavioral states at a range of temporal lags, plotted as in (D). States were derived from real data using shMoSeq (red) or simulated from a Markov

model (black).
(H) Distribution of state durations.

(I) Top: usage of each behavioral state. Bottom: bigram frequencies, capturing transitions between states.
(J) Left: overlap between states and manually annotated categories of syllables. Right: occurrence of grooming syllables (gray ticks) alongside behavioral states

(heatmap) from an example interval.

social interactions (but see Lindsay et al.*® and Maisson et al."®),
and so whether the PFC encodes hierarchical features of spon-
taneous behavior remains largely unexplored.

Here, we ask whether spontaneous behavior is organized into
self-directed tasks that are legible in PFC activity. To do so, we
develop a novel hierarchical model that identifies seconds-to-
minutes-long behavioral states from patterns of syllables. We
find that dorsomedial PFC (dmPFC) activity is dominated by
behavioral states rather than low-level movements. Lesions
demonstrate that the dmPFC promotes the expression of less-
used behavioral states when appropriate in a given context.
These results suggest that spontaneous behavior consists of
self-initiated tasks whose appropriate selection depends on
the dmPFC, and establishes common principles shared by
experimenter-defined tasks and self-guided exploration.

RESULTS

To test whether spontaneous behavior is organized into task-like
states anchored to neural activity, we performed calcium imag-
ing in the dmPFC*’ while monitoring behavior with depth cam-
era-based motion sequencing (MoSeq). MoSeq is an unsuper-
vised machine learning approach for segmenting behavior into
sub-second syllables, such as rears, turns, or sniffs.>*5° We
recorded male mice in an open-field arena that was alternately
empty or supplemented with a male conspecific belonging to a
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strain (C57) that is less prone to aggression in novel environ-
ments (Figures 1A and S1A-S1C; Videos S1 and S2).°" In this
setting, MoSeq identified 72 behavioral syllables, including
various forms of locomotion, rearing, grooming, and investiga-
tion (Figures 1B and S1D-S1F).*?

Spontaneous behavior is organized into higher-order
behavioral states

Ethologists recognize structure in animal behavior by analyzing
how actions cluster over time; behavior possesses higher-order
structure when this clustering cannot be explained through simple
Markovian transition rules.**** In our recordings, subsets of kine-
matically related syllables co-occurred in bouts lasting up to a min-
ute, suggesting that spontaneous behavior is structured over long
timescales (Figure 1C). To test whether this structure was non-
Markovian, we compared observed syllable sequences with syn-
thetic sequences drawn from a Markov model. In the synthetic se-
quences, mutual information between syllables (which captures
the predictability of behavior over time) decayed to chance in
just a few seconds (Figure 1D).>® In contrast, real syllable se-
quences remained predictable for tens of seconds (Figures 1D
and S1G). This order-of-magnitude gap persisted across a variety
of syllable timescales and resolutions®* (Figures STH-S1M). Thus,
simple transition rules cannot explain the persistent syllable use
patterns captured by MoSeq, implying that higher-order states
may organize behavior on a seconds-to-minutes timescale.
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Hierarchical hidden Markov models (HHMMs) offer one
approach for identifying such states. In an HHMM, each state
specifies the expected usage and transition frequencies be-
tween MoSeq syllables. Until now, hierarchical extensions of
MoSeq have faltered on account of the large number of syllables
and their strong autocorrelations®® (Figures S2A and S2B). To
overcome these challenges, we devised a new type of data-effi-
cient HHMM called state-based hierarchical MoSeq (shMoSeq).
shMoSeq has three levels corresponding to different timescales
in behavior: a chain of multi-second behavioral states, which
bias the selection of sub-second syllables, which, in turn, govern
the dynamics of pose (Figure 1E). Each behavioral state is
defined by a unique matrix describing transitions between sylla-
bles, which shMoSeq constructs by combining a baseline transi-
tion matrix (that is shared across states) with syllable usage
biases that are unique to each state.

shMoSeq effectively captures the range of timescales in
behavior; synthetic syllable sequences generated by shMoSeq
were virtually identical to real syllable sequences when assessed
by mutual information, indicating that the dynamics instantiated
by shMoSeq are sufficient to explain the temporal correlations
observable in mouse behavior (Figure 1F). Furthermore, in
contrast to syllables, shMoSeqg-derived state sequences were
well approximated by a simple Markov chain, suggesting that
additional hierarchical layers are not necessary to explain
behavior within the 1-h time span of our recordings (Figure 1G).

During our initial experiments (in which mice explored an open
field and interacted with a C57 conspecific), shMoSeq identified
five behavioral states, including grooming, investigation (of either
the mouse’s immediate surroundings or the conspecific), and
two forms of exploratory locomotion in which mice circumnavi-
gated the arena in a clockwise or counterclockwise pattern
(Figures 1H, 11, and S2C-S2J; Video S3). Consistent with the
premise that similar movements can serve different high-level
goals,®® the mapping between syllables and states was not
one-to-one; except for grooming, most syllables were used in
most states, and even grooming syllables were neither limited
to—nor continuous during—the grooming state (Figure 1J).
Consequently, there was often an interval of uncertainty as one
state transitioned to the next, and up to several seconds
of behavior were needed to classify the current state
(Figures S2K-S2M). Nevertheless, the output of shMoSeq was
largely consistent across model fits, suggesting that states are
readily identifiable (Figure S2G). Together, these findings
demonstrate that exploratory behavior is organized at three hier-
archically nested timescales (millisecond poses, sub-second
syllables, and seconds-long states) that are effectively captured
by shMoSeq.

Affordances sculpt the distribution of behavioral states

Animal behavior is shaped by affordances, which offer opportu-
nities for interaction and serve as substrates for goal-oriented
behaviors.*> Engagement with different affordances might there-
fore structure the behavioral states captured by shMoSeq. In an
empty arena, mice primarily interact with the walls (Figure 2A).
These interactions formed the basis for two behavioral states
in which mice explored the circular arena clockwise (keeping
the wall on their left) or counterclockwise (keeping the wall on

¢? CellPress

OPEN ACCESS

their right) (“exploratory locomotion,” Figures 2B and 2C).
When a male conspecific was added to the arena—expanding
the space of affordances—a new social state emerged, which
included stationary investigation, investigation amid pursuit,
and outright pursuit that sometimes tipped into aggression
(Figures 2D-2F). Statistically, the social state was distinguished
by proximity to the conspecific and high mutual information be-
tween the subject’s syllables and those of the conspecific, which
was driven in part by their tendency to express similar behaviors
at the same time (Figures 2G, S3A, and S3B).

These data suggest that behavioral states reflect nearby affor-
dances (although proximity alone does not determine which state
will be expressed [Figures S3C and S3D]). To further test this idea,
we performed additional experiments in which five unfamiliar ob-
jects were added to the arena (Figure 2H). To capture fine-scale
movements, we tracked 3D keypoints using an array of high-speed
cameras; this setup allowed us to quantify head and limb posi-
tioning during object investigation and to capture nose oscillations,
which serve as a proxy for sniffing.’*>° Despite these changes in
the framerate and recording modality, the five behavioral states
identified by shMoSeq had similar durations to those derived
from depth cameras (Figures S3E and S3F). The states included
two forms of investigation, one directed toward the air (“sniffing”)
and the other directed toward the ground (“local investigation”)
(Figures S3G and S3H). Mice used these states at different fre-
quencies depending on context. For example, novel objects eli-
cited a 3- to 4-fold increase in the local investigation state, which
was further characterized by proximity to objects and deployment
of object-oriented syllables, such as “hunched investigation” and
“slow approach” (Figures 21-2L, S3I, and S3J).

Although mice preferred recently added objects in the minutes
after they first appeared, instances of the investigation state
were distributed throughout each session and therefore were
mostly self-initiated (Figure S3K). A separate 3D keypoint data-
set comparing social and object investigation revealed subtle
differences in posture and syllable expression between object-
and conspecific-associated behavior states, reinforcing the
notion that objects and conspecifics function as distinct affor-
dances that drive unique patterns of behavioral engagement
(Figures S3L-S30). Taken together, these experiments demon-
strate that spontaneous behavior is composed of behavioral
states in which mice flexibly interact with specific affordances.
Mice remain in each state for up to a minute, and transitions be-
tween states capture the mouse disengaging from one afford-
ance and engaging with another.

Behavioral states structure neural activity in the dmPFC
The observation that spontaneous behavior is composed of
states—each associated with distinct affordances and patterns
of movement—raises the possibility that these states corre-
spond to self-motivated tasks. One strong prediction is that if
states indeed correspond to tasks, their identity should be
apparent in areas such as the dmPFC, where neural activity is
known to reconfigure as animals engage in different experi-
menter-defined tasks.*® "%’

In simultaneous recordings of behavior and neural activity in
the dmPFC, up to 20% of neurons were activated or inhibited
during each behavioral state, with up to 60% of neurons
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Figure 2. Affordances sculpt the distribution of behavioral states

(A) Distribution of mouse locations across all recordings. Dashed line shows the arena boundary.

(B) Example interval showing relative wall direction (top) and behavioral states (bottom). Video frames correspond to the two time points marked with triangles.
(C) Distribution (for each behavioral state) of the nearest wall location in egocentric coordinates.

(D) Changes in state usage when a C57 conspecific is present, showing mean and standard error across n = 31 recordings (p < 1.5e—4).

(E) As (B), here showing distance between mice.

(F) As (C), here showing location of the conspecific.

(G) Mutual information between subject and conspecific syllables during each state. Error bars show bootstrap 95% confidence across n = 31 recordings
(p < 0.005). Syllables were kinematically clustered to minimize sparsity-related artifacts.

(H) Design of the novel object experiment. One object was added every 10 min.

() Changes in state usage when novel objects are present, plotted as in (D) (p = 0.001, n = 21).

(J) Left: example interval showing distance to the nearest object (top), occurrence of object-associated syllables (middle) and behavioral states (bottom). Right:

keypoint trajectories for two object-associated syllables.
(K) As (C), here showing location of novel objects.

(L) Fraction of time spent near objects during each state. Dots correspond to recordings (n = 21, p < 6e-5).

responding to at least one state (Figures 3A and 3B). Although
stringent thresholding suggested that most neurons were tuned
to a single state, lifetime sparseness calculations identified many
neurons with broad tuning (Figures 3C, S4A, and S4B).°°
These correlations were reliable enough to decode behavioral
states from dmPFC activity (Figures 3D and 3E), with narrowly
and broadly tuned neurons yielding similar performance
(Figures S4C and S4D). Indeed, state-related neural activity ap-
peared to be the dominant source of structure in the dmPFC, as
distinct behavioral states consistently segregated to different re-
gions of a two-dimensional (2D) embedding of neural activity
(Figures 3F, 3G, S4E, and S4F); furthermore, the axes of neural
activity associated with each behavioral state tended to
align with the top handful of neural principal components
(Figures S4G-S4l). Consistent with recent reports that PFC ac-
tivity evolves continuously as mice progress through structured
tasks,””*® we observed continuous turnover in neural activity
during each state, with a transient increase in turnover rate
when one state transitioned to another (Figure S4J). However,
unlike in these recent reports, there was no detectable stereo-
typy in state-associated neural trajectories (Figure S4K).

The accuracy with which states could be decoded from neural
activity was higher for shMoSeq models with greater heldout
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likelihoods and peaked when state durations respected our orig-
inal (behavior-only) criterion for parameter selection (Figures S4L
and S4M). Thus, models that did a better job of explaining
the hierarchical structure of behavior were also better aligned
with neural activity. In contrast, there was no clear peak in de-
coding accuracy when different numbers of behavioral states
were tested, suggesting that the neural data are compatible
with several different levels of behavioral coarse graining
(Figure S4N).

Prefrontal representations privilege states over
instantaneous movements

State-related activity in the dmPFC could reflect a succession of
naturalistic tasks or be a trivial correlate of ongoing movements
that are broadcast throughout the rodent neocortex.®*** How-
ever, we find little evidence for this kinematics-centered alterna-
tive. In 2D maps of neural activity, syllable representations were
scattered more broadly than state representations, suggesting
that syllables play a smaller role in structuring dmPFC activity
(Figures S4E and S5A). Decoding accuracy was also lower for
syllables than for states (Figure S5B). Furthermore, when we
trained encoders to predict neural activity from syllables, kine-
matics, and (optionally) states, the inclusion of states improved
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Figure 3. Behavioral states structure neural activity in the dmPFC

(A) Example of state-related shifts in dmPFC activity.

(B) Fraction of state-responsive neurons in each recording (n = 31, false discovery rate [FDR] < 5%).

(C) Left: activity of state-responsive neurons across each behavioral state (shown for one recording, “active” defined as Z scored AF/F0>2). Right: raster
indicating whether tuning is statistically significant (FDR < 5%).

(D) Behavioral state decoding for an example interval.

(E) Agreement between true and decoded states.

(F) Usage of each behavioral state across a 2D projection of neural activity from one recording.

(G) Example trajectory from the neural activity map in (F), colored by the current behavioral state.

(H) Top: design of encoding model. Bottom: predictions for an example neuron, shown for encoders with and without access to behavioral state information.
(I) Encoding accuracy with versus without access to behavioral state information, shown for all recorded neurons in the dmPFC (top) and DLS (bottom).

(J) Decoding accuracy for states (top) and syllables (bottom) using activity from the dmPFC versus the DLS. Neural population sizes were matched via down-
sampling. Line and shading show mean and 95% confidence interval (Cl) across recordings (11 < n < 31).

accuracy for almost every neuron; this result replicated in an indicating that dmPFC activity tracks slow, state-level changes
empty arena, with a conspecific, and in recordings with novel ob-  in behavior rather than instantaneous movements. In contrast,
jects (Figures 3H, 3l, and S5C-S5E). The inclusion of states also  sub-second smoothing maximized correlations between DLS
improved accuracy when encoding models had access to world-  activity and behavior (Figure S5J). Fluctuation rates of neural ac-
centric variables such as distance and angle to nearby bound- tivity (analyzed independently of behavior) also differed between
aries and conspecifics, demonstrating that state-related activity = the DLS and dmPFC, with dmPFC neurons remaining autocorre-
does not simply encode spatial relationships to affordances lated ten times longer on average than those in the DLS
(Figures S5F and S5@G). (Figures S5K and S5L). This separation of neurobehavioral time-
To test whether privileged encoding of behavioral states is  scales reifies the hierarchical division of behavior into sub-sec-
unique to the dmPFC, we performed similar recordings in the ond syllables and multi-second states.
dorsolateral striatum (DLS), which encodes syllables and influ-
ences their selection during spontaneous behavior.*®%>% Unlike ~ Affordance-related variables are selectively
in the dmPFC, the inclusion of shMoSeq states did not impact emphasized during specific behavioral states
DLS encoder performance, indicating that states provide nouse-  In conventional experiments with explicitly defined tasks, the
ful information about DLS activity beyond that already contained ~ dmPFC not only encodes the identity of the current task (e.g.,
in syllables and kinematic variables (Figures 3l and S5E). Consis-  that reward is contingent on stimulus A and not stimulus B) but
tent with this finding, behavior state decoders were more accu-  also information about task-relevant variables (e.g., the current
rate for the dmPFC than the DLS, whereas syllable and kinematic ~ value of stimulus A).%® If spontaneous behavior is analogously
decoders were more accurate for the DLS (Figures 3J, S5H, and  composed of self-initiated tasks that involve interacting with
S5l). The timescale of neurobehavioral correlates also differed  specific affordances, then affordance-related variables should
between regions. In the dmPFC, correlations were strongest similarly be emphasized during the states in which they are rele-
when kinematic variables were smoothed over several seconds, vant. Consistent with this possibility, we found that diverse
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spatial and affordance-related variables were represented in the
dmPFC at the single-neuron level, and neurons tuned to these
variables were also often modulated by specific states
(Figures 4A and S6A). For example, neurons encoding distance
and direction to the nearest wall were preferentially active during
the exploratory locomotion states, which are reminiscent of a
behavioral strategy called thigmotaxis, in which walls are used
as a guide for navigation and a source of safety (Figures 2B,
2C, 4A, 4B, S6B, and S6C). This state-specific modulation re-
mained even when controlling for the mouse’s distance, angle,
and movement relative to the wall (Figures 4C, S6D, and S6E).
As a consequence, wall position could be decoded with greatest
accuracy during the thigmotactic states—i.e., during the puta-
tive task in which wall position is most relevant (Figure 4D).

Rather than specifically supporting thigmotaxis, wall-related
activity in the dmPFC could alternatively play a more general
role in spatial navigation. Indeed, such a role has been attributed
to egocentric boundary vector (EBV) cells in areas such as the ret-
rosplenial cortex (RSC),°”:°® which similarly represent the dis-
tance and relative direction of nearby walls. However, comparing
our dmPFC data with RSC recordings from a previous study®® re-
vealed important coding differences between the two brain
areas. Whereas EBV cells in the RSC tiled a range of preferred
distances to the boundary, most wall-tuned neurons in the
dmPFC preferred close boundaries and monotonically increased
their activity as boundaries grew closer (Figures 4E and S6F).
Neurons in the RSC were also more strongly modulated by wall
angle than those in the dmPFC (Figure S6F). Furthermore,
whereas RSC neurons exhibited a spectrum of angle preferences
that tiled the full 0°-360° range, neurons in the dmPFC formed
two discrete clusters tuned to walls on the left or right of the an-
imal, respectively (Figures 4G and S6F). Thus, dmPFC represen-
tations appear specialized for wall-guided exploration rather than
generic spatial coding, consistent with the dmPFC being en-
riched for neurons encoding specific aspects of the task at hand.

State-dependent coding of specific affordances was also
evident during social engagement and object investigation. In re-
cordings with a conspecific, up to 6% of dmPFC neurons were
tuned to social proximity, and these responses were much
more pronounced during the social engagement state —an effect
that persisted even after excluding bouts of aggression and con-
trolling for the relative position and angle of the conspecific
(Figures 4H-4J). This enhancement may reflect the slow time-
scale of dmPFC activity, which required longer and more
frequent social encounters to fully develop (Figures S6G-S6L).
Population decoding of social proximity was also more accurate
during intervals that encompassed the social engagement state,
even though outside these intervals subject mice spanned the
full distribution of conspecific distances (Figures 4K and S6M).
Similarly, in experiments with novel objects, decoding of object
proximity and identity were most accurate during local investiga-
tion, even when mice were a full body-length away from the ob-
ject itself (Figures 4L-40). The activity of object-responsive neu-
rons was also highest during the local investigation state, even
after controlling for distance and angle to the nearest object
(Figures S4N and S40). Thus, representations of walls, objects,
and conspecifics are each enhanced during the behavioral
states in which they are most relevant.
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Changes in task relevance alter representations of
affordance-related variables

If behavioral states correspond to self-initiated tasks, then mak-
ing a task especially salient should enhance the strength of task-
related representations inthe dmPFC. To test this hypothesis, we
subjected mice to attack by a conspecific, which prompted them
to use the wall as a defensive affordance. Subject mice were re-
corded across 5-min blocks with an aggressive conspecific
(belonging to the CD1 strain) who attacked frequently, a non-
aggressive CD1 conspecific who never attacked, or no partner
mouse (Figures 5A and S6P). During attacks, mice entered a
shMoSeqg-identified state that consisted of flights, submissive
postures, and periods of immobility near the wall. This defensive
state—which did not occur in our earlier experiments—often
continued after attacks were over and even persisted during sub-
sequent interactions with the benign conspecific, albeit at a lower
rate (Figures 5B, 5C, and S6Q-S6S). During the defensive state,
mice hugged the wall and dmPFC neurons tuned to wall direction
or proximity became more active (Figures 5D, 5E, and S6T).
Consequently, wall-tuned neurons were more active during
aggression blocks (even after controlling for the position of the
wall), and the relative wall position could be decoded with greater
accuracy during aggression blocks than during blocks alone or
with the benign conspecific (Figures 5F-5I, S6U, and S6V).

In the aggression experiments, information related to a partic-
ular affordance (the wall) was encoded more prominently in a
relevant context (conspecific attack). Conversely, might afford-
ance representations diminish in less-relevant contexts? Indeed,
during our original social interaction experiments (with a neutral
C57 conspecific) dmPFC responses to social proximity declined
over time—as did the accuracy of social distance decoding—
suggesting that one goal of social engagement is to gain familiar-
ity and that conspecific representations become de-emphasized
as familiarity is gained (Figures S6W-S6Y). Similarly, during
novel object exploration, there was a progressive decrease in
the activity of object-responsive neurons during later object en-
counters (Figure S62); this effect was especially pronounced
when we introduced five identical objects instead of five unique
objects.

Thus, environmental affordances—including walls, objects,
and conspecifics—drive the expression of specific, long-lasting
behavioral states in which affordance-related variables—such
as distance to a wall or the identity of an object —are represented
more prominently in the dmPFC. Transitions between states
occur both spontaneously and in response to perturbations
that render certain affordances more relevant (such as walls dur-
ing aggression). This pattern is consistent with the idea that
behavioral states capture affordance-related tasks that arise
naturally during self-directed behavior.

Neural dynamics are a lagging indicator of behavior

To understand the causal processes that underly state and af-
fordance coding in the dmPFC, we asked whether changes in
neural activity occurred before or after changes in behavior,
reasoning that if the dmPFC were driving behavior—as predicted
by some models of hierarchical action planning®~"" —then neu-
ral activity should precede behavior initiation. We instead
observed a systematic delay in neural activity, with state-tuned
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Figure 4. Encoding of affordance-related variables depends on behavioral state

(A) Fraction of neurons modulated by a range of spatial- and affordance-related variables, showing distributions across recordings (n = 31, FDR < 5%).

(B) Top: activity of dmPFC neurons modulated by wall direction (left) or proximity (right). Bottom: true and decoded values of each variable over an example
interval.

(C) Activity of wall-direction-tuned neurons as a function of wall direction, stratified by behavioral state.

(D) Decoding accuracy for wall direction (left) and proximity (right) during each behavioral state (n = 31 recordings, left: p < 0.03, right: p < 6e—4).

(E) Wall-related activity for example neurons in the dmPFC (left) and retrosplenial cortex (RSC, right). Heatmaps show average activity when boundaries are
present at a given distance and angle relative to the mouse.

(F) Left: cumulative distribution of preferred wall distances for neurons in the dmPFC versus the RSC. Arena diameters were, respectively, 125 cm (RSC) and
40 cm (dmPFC). Line and shading show mean and bootstrap 95% CI. Right: strength of wall angle tuning (Z scored mean resultant length) for neurons in the
dmPFC and RSC, respectively.

(G) Pairwise correlation of angle preferences for neurons in the dmPFC versus the RSC (neural population sizes were matched via down-sampling). The two
blocks for dmPFC correspond to left-wall- and right-wall-preferring neurons, respectively.

(H) State-dependent responses to social proximity. Top-left: instances of the social engagement state. Middle-left: intervals when mice are close together (gray,
<5 cm) and mean activity of social-proximity-tuned neurons (black). Bottom-left: activity of individual neurons tuned to social proximity. Right: video frames at the
two marked time points.

() Activity of social-proximity-tuned neurons as a function of social distance, stratified by behavioral state.

(J) Intercepts of the best-fit lines shown in (l), here calculated for each recording with >10 social-proximity-tuned neurons (n = 20, p < 3e-7).

(K) Decoding accuracy for social proximity, comparing time points near to or far from the social engagement state (n = 31 recordings, p = 0.003).

(L) Example of state-dependent responses to nearby objects, showing true versus decoded proximity (top), behavioral states (middle), and activity of object-
proximity-tuned neurons (bottom).

(M) Accuracy of object proximity decoding across behavioral states. Each dot represents one recording in which the state occurred at least once (11 <n < 18).
Correlations are highest during the local investigation state; differences are significant for all states except exploratory locomotion (p < 0.02).

(N) Accuracy of object identity decoding (quantified as area under the receiver operating characteristic curve [auROC]). Analysis was restricted to time points
when the mouse’s nose was within 1 cm of exactly one object and the mouse was facing the object (6 < n < 18, p < 0.05).

(O) Median accuracy of object identity decoding for a range of nose-object distances. Shading shows the standard deviation across 20 random train/test splits.
Accuracy is highest during the local investigation state; this difference is significant with respect to train/test splits (p < 7e-7).

neurons becoming active (or inactive) after state onset (or offset) and S7C) and was undiminished in look-ahead decoders that
(Figures 6A and S7A). A similar lag was evident when decoding  were trained to predict future states from current neural activity
behavioral states from population-wide activity (Figures S7B  (Figure S7D).
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Figure 5. Changes in task relevance alter the encoding of affordance-related variables
(A) Design of the conspecific aggression experiment. Zoom-in shows sudden intensification of wall encoding during the aggression block.
(B) Behavioral state probabilities aligned to aggression bouts, showing mean and standard error across aggressive episodes (n = 48).

(C) Overlap between behavioral states and experimental blocks.

(D) Average activity of wall-direction-tuned neurons when mice are close and parallel to the wall (n = 4 recordings).

(E) As (D), here showing activity of wall-proximity-tuned neurons (p < 0.057).

(F) Activity of wall-direction-tuned neurons as a function of wall angle, stratified by block type. Dots represent time points from one example recording.
(G) Activity of wall-proximity-tuned neurons versus distance to the wall, plotted as in (F).

(H) Intercept at x = 1 (parallel to the wall) of the best-fit lines shown in (F), here shown for all recordings (n = 4, p = 0.028).

() Intercept at distance = 0 of the best-fit lines shown in (G), here shown for all recordings (n = 4, p = 0.028).

The delay in social-state encoding is somewhat surprising
because dmPFC stimulation can encourage social approach.*’
However, some delay might be expected if state onsets are
frequently triggered by actions of the conspecific. To distinguish
these possibilities, we reanalyzed published dmPFC recordings
from the “tube test” of social dominance, in which pairs of mice
enter a tube from opposite ends and compete over who can
move forward and who must back out (Figure 6B); prior examina-
tion of these data found that the dmPFC represents self-behavior
and other behavior but did not report the relative timing of these
signals.“® Our reanalysis revealed delays common to both sub-
ject and opponent behaviors. For example, neural activity asso-
ciated with self-approach was virtually absent before behavior
onset and did not peak until ~2 s after onset (Figure 6C); this
manifested as a 1-s delay in the cross-correlation between true
and decoded behavior (Figure S7E). Cross-correlation peaked
at similar offsets for other annotated behaviors, with no statistical
difference between self and other actions (Figures 6D and S7E).
Thus, dmPFC representations of social interactions appear to
lag behavior in multiple contexts.

The apparent lag between dmPFC and ongoing behavior
could be exaggerated by our use of calcium indicators to mea-
sure neural activity. We therefore recorded from the dmPFC us-
ing chronically implanted neuropixel probes as mice explored an
open-field arena.”” As observed earlier, behavioral states could
be decoded from population activity and occupied distinct terri-
tories in 2D maps derived from the spiking data (Figures S7F
and S7G). To assess the relative timing of dmPFC activity and
behavior, we constructed peristimulus time histograms
(PSTHSs) aligned to state transitions. Most PSTHs showed in-
creases in activity after state onset (Figures 6E and S7H). There
were instances where the rise started earlier, but these may have

8 Neuron 174, 1-16, March 4, 2026

arisen from uncertainty in the timing of state transitions, as when
we focused on transitions with more definite timing (see STAR
Methods), we no longer observed pre-transition increases in
neural activity (Figures 6F, S7I, and S7J). Neurobehavioral
cross-correlations were similarly negative (i.e., neural activity
lagging behavior) or not significantly different from zero when
measured with respect to state transitions (Figure 6G). Although
changes in dmPFC activity led to changes in some non-state
behavioral variables (such as height and wall direction), they
lagged behind the derivatives of those variables, suggesting
that the changes in activity may reflect immediately preceding
movements (such as rearing up or turning), rather than triggering
those movements per se (Figure 6l). Together, these data
suggest that shifts in dmPFC activity generally lag changes in
behavioral state, arguing against a model in which dmPFC exerts
continual, moment-by-moment control over self-directed
behavior.

dmPFC is required for appropriate selection and
sequencing of behavioral states

What other roles might the coding of state and affordance play in
spontaneous exploratory behavior? The canonical function of
the PFC is to exert top-down, context-dependent control over
behavior, which, during spontaneous behavior, could involve
biasing the selection, duration, or content of behavioral states.
To explore these possibilities, we lesioned the dmPFC (including
the prelimbic area and the margins of the infralimbic, anterior
cingulate, and medial orbital areas) and recorded open-field
exploration and novel object interaction (Figures 7A and S7K).
Lesioned and control mice were indistinguishable in raw
behavioral videos and had nearly identical distributions of
wall distances and object distances, respectively (Video S4;
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Figure 6. Neural dynamics lag behavioral transitions

(A) Average onset-aligned activity of state-tuned neurons from an example recording.

(B) lllustration of tube test assay.

(C) Decoded “self-push” probability at onsets and offsets of self-push bouts (estimated via kernel regression), showing mean and 95% Cl across n = 10 re-

cordings.

(D) Timing of peak cross-correlation between true and decoded annotations of self versus other behaviors. Dots and lines represent mean and 95% CI across

recordings and behaviors (15 < n < 20, p = 0.22).
(E) Raster plot for an example neuron aligned to onset of the grooming state.

(F) State probabilities predicted from spiking activity, aligned to state onsets (top) and offsets (bottom). Transitions were excluded from analysis if uncertainty in
their timing was >1 s. Line and shading show mean and 95% CI across recordings (n = 13).
(G) Timing of peak cross-correlation between true and decoded state probabilities, restricted to state/recording pairs for which the peak correlation exceeded the

95" percentile of a shuffle distribution (8 < n < 13, p < 6e-4).

(H) Cross-correlation between true and decoded behavioral variables (mean and 95% CI, n = 13)
(I) Timing of peak cross-correlation between true and decoded behavioral variables (7 <n < 13, *p < 0.03, *p < 7e-6).

Figure S7L). Lesions also had no effect on the duration or usage
of syllables within each behavioral state (Figures S7L and S7M).
However, lesions did systematically contract the timescales over
which behavior was organized. Mutual information between syl-
lables decayed faster in lesioned mice than in controls, reaching
chance levels in less than half the time (Figures 7B and 7C). This
difference was especially stark during open-field recordings
without novel objects (Figure 7D). Similar effects were evident
in a second cohort of animals in which the gap between surgery
and recording was shortened to reduce compensatory effects
(Figure S7N).

Consistent with the possibility that the dmPFC influences the
higher-order structure of behavior, dmPFC lesions altered
behavioral state usage, reducing the expression of less
commonly used states, such as grooming and local investigation
(Figures 7E and S70-S7S); in contrast, the overall distribution of
state durations was unaltered (Figure 7F). These shifts in state
usage likely explain the contraction of behavioral timescales.
Time spent in the grooming and local investigation states corre-
lated session-by-session with the timescale over which behavior
remained predictable (Figure 7G), likely because these specific

states are themselves especially well structured over time and
hence contribute disproportionately to the sustained mutual in-
formation between syllables that we observe during sponta-
neous behavior (Figure S7T). These results argue that the
dmPFC contributes to the higher-order structure of behavior
by differentially influencing the usage of behavioral states.

The observation that dmPFC lesions promote common states,
such as exploratory locomotion,”® at the expense of less com-
mon states, for example, grooming and local investigation
(Figure 7E), could be explained either as a generic increase in
the most common types of behavior or as a more specific loss
of context-specific behavioral control. Consistent with the latter
idea, loss of the investigation state was most pronounced in re-
cordings with novel objects (Figure 7H). Furthermore, whereas
control mice groomed more in the vicinity of novel objects, this
effect almost disappeared in lesioned mice (Figure 71). Together,
these lesion results suggest that the dmPFC imparts hierarchical
structure to behavior by facilitating the expression of a broader
set of behavioral states—especially rare states that depend on
context—without substantively altering their granular (syllabic)
contents; this stands in contrast to DLS lesions, which perturb
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Figure 7. dmPFC influences the usage of behavioral states

gap between timepoints (s)

novel object (cm)

(A) Coronal section from a lesioned mouse, stained with an astrocytic antibody (glial fibrillary acidic protein [GFAP]) that highlights the lesioned area.
(B) Mutual information (MI) between syllables at a range of temporal lags (median and interquartile interval across recordings, n = 19 sham, n = 15 lesion). Pointers
show the mean decay time, defined as time to reach the 99" percentile of the shuffle distribution.

(C) MI decay times for each recording, defined as in (B) (o = 0.006).

(D) As (C), here restricted to recordings without novel objects (n = 9 sham, n = 7 lesion, p = 0.01).

(E) Left: behavioral state usage (mean and 95% Cl) for lesion versus sham recordings (FDR < 5%). Right: combined usage of the exploratory locomotion states.
(F) Median duration of behavioral states for sham and lesion recordings (p = 0.66).

(G) MI decay time versus usage of the grooming and local investigation states (n = 34 recordings, r = 0.79, p = 2.5e—8).

(H) Usage of the investigation state in lesion versus sham recordings, either with (right) or without (left) novel objects (p = 0.034).

(I) Probability of the grooming state as a function of distance to the closest novel object, showing mean and 95% Cl across recordings with novel objects (n =10

sham, n = 8 lesion).

(J) As (B), here showing DLS lesion data from Markowitz et al.”® There is no significant difference in MI decay times (o = 0.3, n = 14 sham, n = 34 lesion).

both syllable usage and sequencing”® but have no effect on the
overall timescale at which behavior is organized (Figure 7J).

DISCUSSION

Animals act toward many ends—to gain information; escape
danger; find food, water, and shelter; and much more.?®"*"®
Sometimes one need predominates, as when researchers deprive
animals of food and then offer food rewards during a task. Howev-
er, in less-structured contexts, the purpose of behavior is often
mysterious; animals may have competing needs that they pursue
at different times, each corresponding to a kind of self-motivated
task.”® In principle, these emergent tasks could have profound ef-
fects on behavior and neural dynamics,®®’” yet the hypothesis
that self-paced exploratory behavior entails a set of tasks has
not been explicitly explored in the lab. Here, we define criteria
that such task-related states should fulfill: they should organize
low-level movements, correspond to recognizable behaviors,
reflect available affordances, and be visible in neural activity,
especially in areas (such as the dmPFC) that are important for
goal-directed behavior. Given these criteria, we find that sponta-
neous behavior is structured as a succession of self-directed
tasks. These observations required the development and valida-
tion of shMoSeq, a hierarchical model that bridges the gap be-
tween microscopic behaviors, identified at the level of poses
and syllables, and the macroscopic behaviors that enable animals
to solve problems and reach goals.

Comparisons between real and simulated data show that the
hierarchy instantiated by shMoSeq—millisecond poses, sub-
second syllables, and multi-second states—can fully explain
the spectrum of timescales apparent in a 1-h recording of explor-
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atory behavior. Of course, this does not preclude the existence
of structure at other timescales: circadian rhythms and internal
states such as hunger and thirst (which are distinct from the sec-
onds-long “behavioral states” we describe here) would likely
become evident in longer recordings,”®®° and substates that
are intermediate between states and syllables—though not
strictly necessary to explain the statistics of our data—might
be practically useful for segmenting behavior (e.g., by splitting
the social state into separate components corresponding to
investigation, pursuit, and aggression).®’ That said, it is notable
that state decoding accuracy peaks at the seconds-to-minutes
timescale nominated by shMoSeq, consistent with the role of
states in scaffolding neural activity.

The correspondence between behavioral states and self-initi-
ated tasks is supported by their representation in the dmPFC,
which, in several ways, resembles that observed during experi-
menter-defined tasks. When experimenter-defined tasks involve
shifting between distinct contexts, the representation of each
context is typically stable over time and abstracted from
moment-to-moment action selection.*”:%%57:82 Similarly, dur-
ing spontaneous behavior, dmPFC encodes long-lasting behav-
ioral states while abstracting over low-level movements. When
the rules of experimenter-defined tasks change over time, the
PFC preferentially encodes stimuli that are salient given the cur-
rent rules.®®285 We found that representations of environ-
mental affordances (walls, conspecifics, or novel objects)
became more prominent during the behavioral states in which
they were relevant. These changes suggest that behavioral state
transitions correspond to shifts in attention®® and hint at the an-
imal’s underlying goals. For example, the fact that object identity
can be decoded better during the local investigation state
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suggests that this state is associated with the goal of seeking in-
formation about objects.

What causal role does the dmPFC play in structuring
behavior? Animals rely on the PFC to adjust their behavior in a
context-specific manner, especially when there are conflicts be-
tween lower-level systems of behavioral control.” Indeed at focal
moments of conflict, the dmPFC can participate directly in action
initiation; examples include time-locked activity prior to active
avoidance during a shuttle-crossing task®” and instantaneous in-
duction of winning by optogenetic activation during social
competition.®® It is unclear whether this instructive role for the
dmPFC persists across time or during self-directed exploratory
behavior. One influential hypothesis places PFC at the apex of
a network charged with action planning and execution.®%7%-8°
In the strongest of these proposals, high-level behavioral states
correspond to metastable attractors in the PFC, and behavioral
transitions arise from stochastic switching between attractors.”"
However, our findings suggest a more permissive role during
spontaneous behavior; rather than actively initiating new states,
the dmPFC may construct abstract representations of ongoing
behavior (e.g., by passively monitoring incoming sensory and
motor information) that help specify the distribution of states in
a given context. This mode of regulation could reflect the influ-
ence of the dmPFC on brain-wide neural dynamics®>°" and is
compatible with a wide range of brain areas instigating behav-
ioral state transitions.

The attribution of goals to living organisms has a fraught
history.?” “Goal” can refer broadly to any process of control re-
sulting from natural selection (i.e., “teleonomy”®) or, more
narrowly, to directed programs of behavior that are under cogni-
tive control.”* Whereas goal-directedness in traditional neuro-
science is typically tested through the manipulation of task re-
wards (as during devaluation®), other approaches are
required for naturalistic behavior, which often lacks task struc-
ture and explicit rewards.®® Here, we addressed this problem
by articulating a set of observational criteria for goal-directed-
ness involving both behavior and neural activity. We note that
much of spontaneous behavior remains intact after dmPFC le-
sions, suggesting either redundancy in the systems that support
the expression of task-related states during unstructured explo-
ration or a more prominent role for sensorimotor habits. Longer-
timescale behavioral recordings among a wider variety of affor-
dances may provide a clearer view.

To identify behavioral states, we designed a data-efficient
HHMM (shMoSeq). Unlike approaches that cluster syllables
into mutually exclusive groups,®*** shMoSeq does not enforce
a strict mapping between syllables and states. Rather, states
are defined by probabilistic changes in syllable usage, meaning
that syllables can be reused across states in a context-specific
manner. This framework effectively captures the long-timescale
(i.e., non-Markovian) structure of syllable sequences and was
ultimately ratified by its close correspondence with neural
dynamics in the dmPFC. Several other methods for inferring
behavioral hierarchy have also been reported; these employ
methods such as compression,’® repeated sequence search,”’
or context-free-grammars®® and, as such, are more geared to-
ward short, repeated action sequences than the prolonged
behavioral states highlighted here. Future elaborations of

¢? CellPress

OPEN ACCESS

shMoSeq that take advantage of self-supervised behavioral em-
beddings might reveal states with greater richness or speci-
ficity.*?'°° ShMoSeq analysis of uninstructed movements during
experimenter-defined tasks could also be useful for uncovering
changes in task engagement or strategy.'®"

We have released shMoSeq as a python package with docu-
mentation and tutorials (https://state-moseq.readthedocs.io/
en/latest/). Information about runtime, compute requirements,
parameter selection, and the types of data for which shMoSeq
may be useful are available in the STAR Methods. It is important
to note that shMoSeq affords some choice in the total number of
identified states. Although we heuristically chose this number
based on the stability of model outputs, more than one level of
coarse graining may be reasonable for a given dataset, and the
relevant level will doubtless vary based on the total amount of
data and complexity of behavior therein.

Whatever form they take, hierarchical behavior models will be
an important future tool for exploring cognition during unstruc-
tured behavior. For decades, researchers have constrained ani-
mals’ movements and narrowed their motivations in order to
isolate specific cognitive processes and unspool their neural
causes. The result has been to minimize the agency and sponta-
neity that characterize most behavior outside the lab.'*" %2
Ultimately, we would like the best of both worlds—to probe
well-defined computations using normative models even as ani-
mals set their own goals and pursue them freely.'%>'%* Here,
we have taken a small step in that direction by identifying the
behavioral states that emerge during unstructured exploration in
mice. By bracketing intervals of relative stability in the animal’s
behavior, these states expose the possible succession of tasks
that structure cognition over time—a hypothesis that is borne
out in our analysis of dmPFC activity. This connection between
states and tasks—if it proves durable—would allow researchers
to employ during naturalistic behavior the same normative frame-
works that they typically seek through experimental reductionism.
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STARXxMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Chicken Anti-GFAP Abcam Cat# ab4674, RRID:AB_304558

Alexa Fluor 488, Donkey Anti-Chicken IgY

Jackson Laboratory

Cat# 703-545-155; RRID_AB_2340375

Bacterial and virus strains

AAV1.Syn.GCaMP6f.WPRE.SV40

AAV1.Syn.Flex.GCaMP6f.WPRE.SV40

Douglas Kim & GENIE
Project; Chen et al.'®

Penn Vector Core

Addgene viral prep # 100837-AAV1

Cat# AV-1-PV2819

AAV1.EF1a.DIO.GCaMP6s.P2A.nls.dTomato Jonathan Ting Addgene viral prep # 51082-AAV1
AAV9.CBA.DO(Fas).GCaMP6s UNC Vector Core N/A

Chemicals, peptides, and recombinant proteins

N-Methyl-D-Aspartate Sigma Cat# M3262-25MG

Vybrant™ CM-Dil Cell-Labeling Solution

ThermoFisher

Cat# V22888

Deposited data

Raw and processed behavior and neural activity

Zenodo

10.5281/zenodo.17488068

Experimental models: Organisms/strains

Mouse: CD1

Mouse: B6.FVB(Cg)-Tg(Drd1-cre)EY262Gsat/Mmucd
Mouse: B6.FVB(Cg)-Tg(Adora2a-cre)KG139Gsat/Mmucd
Mouse: BALB/cJ

Mouse: C57BL/6J

Charles River
MMRRC-UCD
MMRRC-UCD
Jackson Laboratory
Jackson Laboratory

Strain code: 022
Stock# 030989-UCD
Stock# 036158-UCD
Jax stock #000651
Jax stock #000664

Software and algorithms

Custom depth-MoSeq pipeline
Multi-camera calibration pipeline
Keypoint-MoSeq

ShMoSeq

CalmAn

Open Ephys (v0.6)
Spikelnterface

Kilosort 4

Pinpoint

HRNet

UMAP

Zenodo

Zenodo

Weinreb et al.*?
Zenodo
Giovannucci et al.’*®
Open Ephys
Buccino et al.'”
Pachitariu et al.'®®
Birman et al.’*®
Sunetal.’®

Mclnnes et al.’""

10.5281/zenodo.17488068
10.5281/zenodo.17488068
https://github.com/dattalab/keypoint-moseq
10.5281/zenodo.17488068
https://github.com/flatironinstitute/CalmAn
https://open-ephys.org
https://spikeinterface.readthedocs.io
https://github.com/MouselLand/Kilosort
https://github.com/VirtualBrainLab/Pinpoint
https://github.com/HRNet
https://umap-learn.readthedocs.io

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All experiments were carried out in accordance with Harvard Medical School institutional animal care and use committee (IACUC)
protocol number IS00000138. Subject mice included wildtype C57BL6/J mice (Jackson Laboratory stock no. 000664), C57BL6/J
mice harboring either the Drd1a-Cre allele (B6.FVB(Cg)-Tg(Drd1-cre)EY262Gsat/Mmucd; MMRRC #030989-UCD) or the A2a-Cre
allele (B6.FVB(Cg)-Tg(Adora2a-cre) KG139Gsat/Mmucd; MMRRC #036158-UCD),"'> CD1 mice (Charles River, #022), and BALB/
cJ mice (Jackson Laboratory stock no. 000651). All mice were recorded between 3 and 7 months of age and maintained in a
12 h:12h light/dark cycle with food and water ad libitum. Individual housing was used following surgery and group-housing otherwise.

We recorded dorsomedial prefrontal cortex (dmPFC) activity in 6 male mice across 31 sessions in the initial round of solitary and
social open field recordings, 4 male mice across 4 sessions during the aggression experiments, 9 female mice across 18 sessions
during the object investigation experiments with unique objects, and the same 9 female mice across 9 sessions during the object
investigation experiments with identical objects. We recorded dorsolateral striatum (DLS) activity in 21 mice across 30 sessions.
For the lesion experiments, we recorded 10 male mice (5 lesion, 5 sham) across 34 sessions (18 with novel objects, 16 without),
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followed by a second cohort of 8 male mice (4 lesion, 4 sham) across 16 sessions (without objects). We also tracked 3D keypoints in
5 additional male C57 mice interacting with objects (21 sessions) or with female BALB/cJ conspecifics (19 sessions). For neuropixels
recordings in dmPFC, we recorded 3 male C57 mice across 13 sessions.

METHOD DETAILS

Behavior Assays

All mice were habituated to handling, head-fixation, and the recording arena for before experiments began. On recording days, mice
were brought to the laboratory and habituated in darkness for at least 20 minutes before recording. All experiments were performed
during the dark cycle under infrared illumination.

Open field exploration

During the initial set of social and solitary open field recordings with a C57 conspecific, subject mice were recorded for 80 minutes in
alternating blocks: 10 minutes alone, 30 minutes with an unfamiliar conspecific, 10 minutes alone, and then 30 minutes with the same
conspecific. Some conspecifics bore a commutated patch cord that was not used during the experiment.

Conspecific aggression

For recordings of aggressive social interaction, subject mice were recorded in an open field arena for one hour in alternating blocks:
5 minutes alone, 5 minutes with an aggressive conspecific (CD1), 5 minutes with a non-aggressive conspecific (CD1), and so on
(same pair of conspecifics each time). Prior to the initiation of experimental trials, CD1 mice were pre-screened to identify highly
aggressive or non-aggressive individuals using the following procedure: CD1 were placed alone in an open field arena and allowed
to habituate for 10 minutes. We then performed a sequence of four probe trials in which a C57 mouse was placed in the arena for
10 minutes or until the onset of aggression (as identified by a trained observer). CD1 mice with the shortest average latency to aggres-
sion were defined as highly-aggressive. CD1 mice who never engaged in aggressive behavior were defined as non-aggressive.
Novel object exploration

For the novel object experiments, mice were recorded for one-hour sessions in the 3D keypoint tracking arena. A new object was
added to the arena every ten minutes, resulting in five (unique) objects by the end of the recording; objects were randomly selected
from the following set: 15 mL Falcon tube cap, pencil nub, rolled up piece of lab tape, small rubber band, crumpled twist tie, cube of
packing foam, origami star, gear, syringe cap, tin foil ball, bubble wrap clipping, hexnut, glove clipping. We also recorded sessions
with five identical objects, which in every case were hex nuts.

Lesion recordings

Lesioned mice were recorded in the 3D keypoint tracking arena. In a subset of recordings, novel objects (hex nuts) were added to the
arena at ten minute intervals as described above. In another set, mice were allowed to explore the arena for one hour without inter-
ruption. Among this full set of recordings, we identified a handful of extreme outlier recordings in which mice remained in one small
part of the arena for almost the entire session. We therefore excluded from analysis all sessions where the mouse was immobile
(< 1 mm/s centroid velocity) at least 75% of the time; a total of 4 out of 56 sessions were excluded.

Stereotactic surgery procedures

For all stereotactic surgeries, mice were anaesthetized using 1-2% isoflurane in oxygen at a flow rate of 1 L/min and injected with
bupivacaine (1.25 mg/kg) under the scalp. All coordinate axes were zeroed relative to bregma (including dorsal/ventral, which
was zeroed relative to the skull surface), and coordinates are in units of mm. All injections were performed using a Nanoject Il or Nano-
ject Il (Drummond) at 60 nL/min. Incisions were closed using Vetbond (3M). Postoperative care included a subcutaneous injection of
buprenorphine SR (1 mg/kg, given 1 hour prior to surgery start) and carprofen (5 mg/kg) administered through drinking water.
Calcium imaging in dorsomedial prefrontal cortex (dmPFC)

To record neural activity in dmPFC, virus injection and gradient index (GRIN) lens implantation were performed across two different
surgeries. In the first surgery, we injected AAV1.Syn.GCaMP6f.WPRE.SV40'%° (Addgene #100837, titer: 0.8e13 — 1.2e13) unilaterally
into the left hemisphere at two different depths (2.0 mm AP, 0.38 mm ML, -1.7 & -1.9 mm DV, 350 nL each). Incisions were closed and
mice were allowed 4-8 weeks for recovery and viral expression. In the second surgery, a circular craniotomy was opened to the left of
the injection site (center: 2.0 mm AP, 0.75 mm ML, diameter: 1.4 mm). Brain tissue exposed by the craniotomy was aspirated to an
approximate depth of 1 mm from the skull surface at the margin of the craniotomy. The head was then rotated 10 degrees clockwise
and a GRIN lens (1 mm diameter, 4 mm length, Inscopix part 1050-004623) was lowered through the center of the craniotomy to an
approximate depth of 1.7 mm from the skull surface at bregma. The GRIN lens and medical-grade titanium headbars were then
anchored to the skull using biocompatible cyanoacrylate superglue (Loctite 454). After 2-4 weeks, a baseplate (Inscopix part
1050-004638) was added with additional superglue and exposed glue was light-sealed using black nail polish.

Calcium imaging in dorsolateral striatum (DLS)

To record neural activity in DLS, virus injection and GRIN lens implantation were performed in a single surgery, which varied slightly
depending on the population being imaged (direct pathway, indirect pathway, or both at once). For pathway-specific imaging, 500-
600 nL of AAV1.Syn.Flex.GCaMP6f.WPRE.SV40 virus (Penn Vector Core) was injected into the right DLS (AP 0.5, ML 2.25, DV 2.4) of
Drd1a-Cre (N=7) or A2a-Cre (N=7) mice respectively and a GRIN lens (1 mm diameter, 4 mm length; Inscopix part 130-000143) was
implanted 200uM above the injection site immediately following virus injection. Pathway-independent imaging followed a similar
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procedure, except we injected Drd1a-Cre mice (N=5) with a 1:1 mixture containing AAV1.EF1a.DIO.GCaMP6s.P2A.nls.dTomato
(Cre-On; Addgene #51082) and AAV9.CBA.DO(Fas).GCaMP6s (Cre-Off; UNC Vector Core). Data from all pathways were combined
for analysis since the key results did not differ by pathway (Figure S5I).

Electrophysiological recordings in dmPFC

To record spiking activity in dmPFC, we implanted Neuropixels 1.0 probes (IMEC) chronically into the right medial prefrontal cortex
(AP +2.3 mm, ML +0.5 mm, DV 3.5-4.5 mm from the cortical surface). Prior to implantation, probes were coated with the lipophilic
tracer Dil (Fisher Scientific, catalog #V22888) for histological verification.

dmPFC lesions

To lesion the dmPFC, we injected male C57BL/6J mice (8 weeks old) with N-Methyl-D-Aspartate (NMDA; Sigma, M3262-25MG) dis-
solved in saline (10 mg/mL). Control (sham) mice were injected with saline alone. Two injections of 120 nL were made in each hemi-
sphere (i.e., four total injections per mouse) at coordinates AP 2.3, ML +0.4, DV —2.3 and AP +1.7, ML +0.4, DV —2.0. Mice were
recorded 5-12 weeks after surgery.

Histological verification

Following completion of behavioral tests, a subset of mice was anaesthetized using 1-2% isoflurane in air and perfused with cold
PBS followed by 4% paraformaldehyde. Coronal brain sections (60pm) were sliced on a Leica VT1000 vibratome. All slices were
stained with DAPI, and slices from lesioned mice were additionally stained with antibodies for glial fibrillary acidic protein (GFAP;
Abcam; ab4674, 1/1000 dilution). Slices were imaged with an Olympus VS120 Virtual Slide Microscope.

Recording setups

Open field arena

Neural and behavioral recordings in DLS were performed as previously described.*® Recordings in dmPFC (excluding the novel ob-
ject experiments) used an updated open field arena with a transparent floor that allowed simultaneous depth and infrared (IR) acqui-
sition from above and below the animal. A pair of Kinect Azure cameras acquired synchronous 30Hz video data while neural calcium
transients were recorded at 15Hz using the nVista 3.0 platform from Inscopix. To synchronize the two recording modalities, the nVista
trigger port was connected to an Arduino that updated an array of IR LEDs in tandem with the neural data acquisition.
High-speed 3D keypoint tracking

Electrophysiological recordings, novel object recordings, and lesion recordings were captured using an array of 6 Basler ace
acA1300-200um Monochrome USB 3.0 Cameras (Edmund Optics 33-978) as previously described.’® The cameras were triggered
at 120Hz using an Arduino, and a copy of the trigger signal was sent to the Inscopix or neuropixels data acquisition system for syn-
chronization. The arena was illuminated with 32 near-infrared high power LED stars (LEDSupply, CREEXPE-FRD-3). To avoid reflec-
tions and saturations effects, the bottom camera was triggered slightly out of phase with the top cameras and the LEDs were splitinto
two groups: one group below the arena that turned on during the bottom camera’s exposure, and one group above the arena that
turned on during the top and side cameras’ exposures.

Preprocessing of neural data

Miniscope recordings

Calcium-fluorescence videos were recorded at 15Hz using the nVista 3.0 platform from Inscopix. Videos were spatially down
sampled by a factor of 4 and motion corrected using CalmAn.'%® We used the constrained non-negative matrix factorization
for microendoscopic data (CNMF-e) algorithm'%%""% to extract regions of interest (ROls) corresponding to putative cells and their
corresponding activity traces. ROIls were filtered using quality metrics output by CalmAn (CNN prediction > 0.05; signal-to-noise
ratio > 2.5). Recordings with fewer than 50 detected neurons were rejected. Raw CNMF-e traces were Z-scored before downstream
analysis.

Electrophysiology recordings

Neuropixels signals were recorded with Open Ephys (V0.6). Data was then preprocessed with Spikelnterface'®”; we applied a band-
pass filter between 300 and 6000Hz, followed by a global common median reference. We then spikesorted each recording indepen-
dently using Kilosort 4.°% In Kilosort 4, we set three hyperparameters: ‘amplitude_cutoff_thresh’ was set to 0.1, isi_violations_ratio_
thresh was set to 1, and presence_ratio_thresh was set to 0.9; the remaining hyperparameters were left to default values. Spike times
were aligned to video frames and then binned using a100ms sliding window. Unit coordinates were determined based on the position
of the Neuropixels channel with the maximum amplitude for that unit. That channel’s position within the brain was then estimated
using the Allen Institute brain atlas using the Pinpoint library."°® Only units mapping to the prelimbic cortex were used for downstream
analysis.

MoSeq analysis from top/bottom depth and infrared

To estimate syllables from top-down and bottom-up depth/infrared cameras in the presence of occluders (e.g., during social inter-
action), we developed a novel pipeline that included segmentation, multi-camera registration, missing data imputation, dimension-
ality reduction and MoSeq analysis (Videos S1 and S2). A version of this pipeline for single-animal recordings is available online
(https://github.com/calebweinreb/top-bottom-moseq).
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Segmentation

We first used a neural network with a UNET++ architecture’'* to segment the two interacting mice as well as the miniscope and its
attached cable. To reliably distinguish between mice, we marked the tail base of one with a black sharpie and performed multi-animal
keypoint tracking using higherHRNET.""® Gaussian activations corresponding to tracked keypoints were included as additional
channels when training and applying the segmentation pipeline (Figures S1A and S1B).

Multi-camera registration

Intrinsic parameters for the top-down and bottom-up depth cameras were extracted using the Kinect Azure API. Extrinsic parameters
were calculated from videos of a checkerboard calibration object, as demonstrated in the “calibrate.ipynb” notebook from the top-
bottom-moseq repository. After calibration, 3D point clouds of segmented mice were derived from each camera and then embedded
in a common coordinate system. Outlier points were removed using a nearest neighbor algorithm from Open3D."'® The embedded
point clouds were then rendered as a pair of reconstructed depth-maps from virtual orthographic top-down and bottom-cameras. IR
reflectance signals were propagated along with the point clouds. The resulting depth and IR images were similar to the original cam-
era outputs, but now registered to a common coordinate system. Areas that were out of view from the original (non-orthographic)
camera angles (e.g., along the far flank of the mouse) were registered as missing data (see Video S1 for an example). These steps
can be reproduced using the “orthographic_reprojection” function from the top-bottom-moseq repository.

Missing data imputation

Imputation of missing pixel values was performed in three steps: a forward pass, a backward pass, and a merging step (Figure S1C;
Video S2). Each pass was performed using a convolutional neural net (CNN) with a U-net architecture. During the forward pass, im-
ages were imputed based on masked observations from the current timepoint and imputation outputs from the previous timepoint.
The purpose of recurrence here was to propagate relevant pose information across frames and to ensure temporal continuity of the
imputed videos. Depth and IR channels from both cameras were imputed simultaneously using a single network. The backward pass
was the same except that frames were fed in the opposite order. Another neural net was used to merge the forward and backward
pass outputs. The resulting consensus images for each frame thus incorporated relevant pose information from past and future time-
points. The above steps can be reproduced using the “inpaint_session” function from the top-bottom-moseq repository.
Dimensionality reduction and MoSeq

After imputation, top-down and bottom-up depth/IR images were centered and aligned and then projected into low-dimensional
pose space. Rather than using principal components analysis (PCA) for dimensionality reduction — as is done in the standard MoSeq
pipeline®® — we opted for a shallow convolutional autoencoder due to its greater representational capacity (Video S2). The autoen-
coder included a 10-dimensional bottleneck layer and activations in this layer were used as the final pose representation. Pose tra-
jectories were then modeled using the standard MoSeq pipeline.®” Separate MoSeq models were fit for the initial set of open field
dmPFC recordings (with a C57 conspecific), the DLS open field recordings, and the aggression recordings with a CD1 conspecific.

MoSeq analysis from 3D keypoints

For the high-speed multi-camera setup, 3D keypoint tracking and syllable inference were performed as previously described.*®
Briefly, 2D keypoint detection from each of the six camera angles was performed using an HRNet."'® We then performed 3D
triangulation using a custom multi-camera calibration pipeline (https://github.com/calebweinreb/multicam-calibration/tree/main/
multicam_calibration). Keypoint trajectories were refined using GIMBAL,""” which is a model-based approach that leverages
anatomical constraints and motion continuity. The refined keypoint estimates were then fed to keypoint-MoSeq*® for syllable infer-
ence. For the latter step, we used a 6-dimensional latent space, set the maximum syllable count of 50, and targeted a median syllable
duration of 400ms. Separate models were fit for the lesion dataset, the miniscope recordings with novel objects, and the neuropixels
dataset.

Syllable coarse-graining

Clustering syllables based on kinematic similarity

To cluster syllables by kinematic similarity, we calculated the pairwise distance between their mean pose trajectories and then per-
formed hierarchical clustering using complete linkage. For syllables derived from depth-MoSeq, the pose trajectory for a single syl-
lable instance was defined as the sequence of dimensionally reduced poses spanning 5 frames before to 15 frames after the syllable
start time and the mean trajectory was calculated as by averaging 1000 instances. The similarity between mean trajectories was
computed using Pearson correlation. Keypoint-derived syllables, mean trajectories were estimated using the “get_typical_trajecto-
ries” function from the keypoint-moseq python package (version 0.4.7), with parameters set as follows: pre=20, post=60, min_dura-
tion=12, density_sample=False. The similarity between mean trajectories was computed using cosine distance.

Clustering syllables based on transition probabilities

To cluster syllables based on transition probabilities (Figures S1J and S1K), we represented the transition matrix as a directed graph.
We then applied the Paris algorithm for hierarchical graph clustering,**''® which outputs a dendrogram describing the successive
merges of syllables into clusters. To select levels of the hierarchy at which to partition the dendrogram, we examined the differences
in merge distances across consecutive steps. Specifically, we calculated the first derivative of the dendrogram linkage values and
identified prominent local maxima using a peak-finding algorithm (minimum threshold = 0.02, minimum spacing = 3 merges). Three
maxima were identified corresponding to n = 13, n = 9, and n = 4 clusters respectively.
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Analysis of behavioral timescales
To assess the predictability of syllable sequences, we computed mutual information (MI) at a range of temporal lags. Given offset At
and syllable sequence z1,...,zr, we defined:

predictability(At) = MI({z;,z;.a¢ | forallt suchthat 1 <t < T — At})

For Markov model comparisons, we calculated an empirical transition matrix for each recording and then sampled a Markovian
sequence with the same length as the real sequence. For comparisons to shMoSeq, we fit the parameters of a shMoSeq model using
real syllable sequences and then sampled synthetic state and syllable sequences by conditioning on those parameters (see “Inferring
behavioral states” for details of model fitting and simulation).

We used a shuffle procedure to estimate the null distribution of Mls corresponding to a complete lack of predictability in behavior.
The shuffle MIs were calculated by pairing independent syllable sequences from separate recordings. Specifically, given offset At,
syllable sequence z4, ...,zr, and a second syllable sequence Z,, ...,z from another recording, we defined:

shuffle predictability(At) = MI({z;,z, ,, | forallt suchthat1 <t < T — At})

this procedure was repeated once for each syllable sequence zy, ...,z7, with the second sequence Z, ...,z sampled uniformly at
random from the dataset. To estimate the temporal horizon over which a syllable sequence remains predictable, we calculated min-
imum At required for its Ml to reach a noise floor (“mutual information decay time”). The noise floor was defined as the 99" percentile
of the shuffle Mls (calculated over all shuffled sequences and At’s).

In Figures 1D, 1F, 7B, 7J, S7N, and S7T, we used coarse-graining to improve the accuracy of Ml estimation. Our reasoning was that
MI becomes unreliable when there are too many syllable categories, as some categories occur only rarely. With limited samples,
these rare categories inflate apparent correlations simply by chance, leading to an overestimate of predictability. To mitigate this
sampling noise, we grouped syllables into 8 clusters based on kinematic similarity and relabeled them before computing Ml (i.e. after
the Markov and shMoSeq simulations mentioned above).

Coarse-graining was also applied in Figures S1K and S1M, but here to test whether non-Markovian sequence statistics were due to
over-fragmentation of behavior. Syllables in this case were grouped into 4 < N < 13 kinematic clusters (Figure S1K) or 3 <N < 16
transition-based clusters (Figure S1M) and relabeled before both Ml computation and Markov simulation.

To examine predictability within individual states (Figure S7T), we calculated Ml over pairs of timepoints that fell within contiguous
instances of each state. Since MI calculations are sensitive to the total amount of data used, we sampled an equal number of in-
stances of each state (n = 200 instances) and then used these to calculate per-state Ml curves. This procedure was repeated 100
times to generate a bootstrap distribution of Ml values for each temporal offset.

ShMoSeq: generative model and fitting algorithm

Model motivation

We sought a model that could (i) identify behavior states corresponding to different patterns of syllable usage over time; (ii) efficiently
use the data available in a typical experiment (i.e. avoid over-parameterization). To that end, we created a hierarchical hidden Markov
model (HHMM) called state-based hierarchical MoSeq (shMoSeq). In the model, each behavioral state specifies a transition matrix
over syllables. Crucially, shMoSeq parameterizes each state’s transition matrix by combining a baseline transition matrix (that is
shared across behavioral states) with a vector of syllable biases (that is specific to each state) (Figure S2A). The baseline matrix
captures general first order statistics — such as self-transitions among syllables or the tendency of mice rear down after they rear
up — whereas the bias term state-dependent shifts in overall syllable usage. By combining these two terms, shMoSeq can express
a wide variety of sequence statistics while limiting the total number of parameters.

shMoSeq has several advantages over a standard HHMM. First, it allows the dominant feature of syllable transitions — their auto-
correlation — to be represented non-redundantly in the baseline transition matrix, rather than being separately ‘relearned’ by each
state. Second, it allows for robust fitting given limited data; whereas a standard HHMM would have roughly nstates * ngy,,am% total pa-
rameters, shMoSeq has on the order of Ngtates * Nsyliables + ngyllables parameters. To illustrate why this is important, note that a typical
experiment includes several hours of data with roughly 5000 syllable transitions per hour. If we assume that there are 50-100 unique
syllables and 5-10 behavioral states, then the number of parameters in a standard HHMM (10°-10%) would rival or exceed the total
number of independent observations in the dataset. By contrast, the number of parameter in a shMoSeq model (10°-10% would be
well below the number of observations.

To formally test this intuition, we simulated data from a shMoSeq model instantiated with random parameters and then performed
model fitting using either shMoSeq or a standard HHMM. The simulated datasets had 250,000 frames (~2.5 hours at 30 frames per
second) and 5 states with average durations of ~10 seconds. For the underlying syllable sequences, we scanned over a range of
syllable counts (5, 10, 20, or 50) and durations (1-100 frames). We found that for small numbers of syllables and/or short syllable du-
rations, shMoSeq and the standard HHMM performed equally well (Figure S2B). However, in the more realistic scenario of 50 sylla-
bles with durations of >10 frames, shMoSeq continued to perform well while the standard HHMM failed catastrophically.

We note that an alternative approach for reducing the parameter count is to use a categorical hidden Markov model (CatHMM),
where each behavioral state specifies a categorical distribution over syllables. CatHMMs have the virtue of being parameter efficient,
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but they introduce a new problem by assuming that syllables are conditionally independent given states. Because of this false
assumption, CatHMMs are liable to overestimate the certainty of state sequences. This is illustrated by the following scenario: ima-
gine there is a “walk” syllable that typically lasts half a second (15 frames) and occurs with 30% probability in state A and 60% prob-
ability in state B. Whenever this syllable occurs, the CatHMM will treat it as ~15 independent observations. If states A and B are
equally likely a priori, the posterior probability of state B would be:

P(walk | B)'®
P(B | 15 frames of walk) = (walk | B) - = 0.99997
P(walk | A)” +P(walk | B)
whereas the correct estimate would be closer to:
P(B | one instance of walk) = B P(walk | B) = 0.67

(walk | A) + P(walk | B)

Thus, compared to alternatives such as standard HHMMs or CatHMMs, the parameterization instantiated in shMoSeq is well-
suited to the syllable counts, autocorrelations, and dataset sizes typical of MoSeq datasets.
Model definition
The generative model implemented in shMoSeq is defined as follows, where w; denotes the current behavioral state and z; denotes
the current syllable.

wy ~ Catazy, | (state sequence)
z ~CatT™ (syllable sequence)

To prevent rapid switching between states, the transition matrix z has a sticky Dirichlet prior (defined below), in which each row =,
is drawn from a Dirichlet distribution that is boosted in the w’th position by a stickiness hyperparameter «.

ny ~ Dirichlet(s,....f + «, ..., )

The size of k determines the bias toward self-transitions, hence the durations of behavioral states. The syllable transition matrices
T are constructed using a generalized linear model that adds state-specific syllable biases B,, to a baseline matrix A that is shared
between states.

T = Softmax(A, + B,)

Because softmax is invariant to constant shifts of its inputs, we require that the rows of A and B are centered. We also assume that
the columns of B are centered, since any uniform shift in a column of B can be countered by an equal and opposite shift in the same
column of A without affecting the sums {A, + By|V w,z}. We therefore define

A =AC, A ~N(0,&)
B =CLBC, B, ~N(0,c3)

where n is the total number of syllables, m is the total number of states, and C, is an orthonormal matrix that embeds R” ~Tinto the
space of centered vectors in R".

Parameter inference

Syllable sequences were derived using MoSeq and treated as observed. The shMoSeq model parameters and behavioral state
sequence were fit using Gibbs sampling. We used a Laplace approximation to sample (A’,B’). The mode of the Laplace approxima-
tion was approximated by gradient descent and the Hessian was computed through auto differentiation. All the other variables were
sampled exactly. The behavioral state sequence sampled during the final Gibbs step was carried forward for analysis. Marginal prob-
abilities of behavioral states were computed exactly using the forward-backward algorithm.

ShMoSeq: practical application
Software availability and compute requirements
shMoSeq can be run on any operating system that supports JAX (https://github.com/jax-ml/jax). A CUDA-capable GPU substantially
reduces runtime but is not required. For reference, a 90-hour dataset takes ~1 minute to fit on a GPU and requires ~17GB of memory.
The same dataset takes ~6 minutes on a CPU. Memory and runtime scale approximately with dataset duration, the number of syl-
lables, and the number of states. shMoSeq can in principle be applied to any sequence of behavioral labels, not just those derived
from MoSeq. Examples include labels generated by other unsupervised algorithms (e.g., B-SOID,"'® VAME'?°) or from supervised
classifiers, provided the sequences exhibit non-Markovian structure. We provide an online tutorial for mutual information-based anal-
ysis of non-Markovian statistics (as in Figures 1F and 1G).

To understand how much data is needed for model fitting, we fit shMoSeq to randomly down-sampled copies of our initial open
field dataset. The quality of each fit was assessed using (1) log probability of the model (when applied to the full dataset; Figure S2N);
(2) similarity to the final model that was fit using the full dataset (Figure S20); this latter metric tests whether the down-sampled
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dataset is functionally equivalent to the full dataset with respect to model outputs. Both metrics rose steeply from 0 - 10 hours of data
and then plateaued (or rose gradually) beyond 20 hours. To test the generalizability of these results, we repeated the same exper-
iment using a larger dataset [200 hours of open field exploration from a previous paper®] and a range of values for the number of
states (Figures S2P and S2Q). This time model quality plateaued after 20-40 hours of data, although some improvement beyond
this point was evident for higher state counts. Based on these results, we recommend that datasets be >10 hours at minimum
and ideally >40 hours.

When applying shMoSeq to a new dataset, it is often necessary to scan over stickiness values, state counts, and random seeds. To
reduce the burden of hyperparameter search, we analyzed how the optimal stickiness varies with dataset size and number of states.
Specifically, we fit shMoSeq to down-sampled copies of a large open field dataset from a previous paper®®; we down-sampled to a
range of dataset sizes and fit models with a range of state numbers, stickiness parameters and random seeds. After determining the
optimal stickiness for each state count and dataset size, we observed a power-law scaling relationship (i.e. linear scaling in log
space), suggesting that users can extrapolate the optimal stickiness from a smaller set of test fits (Figures S2R-S2T). The scaling
relationship can be expressed as follows; coefficients will vary by dataset.

log(optimal stickiness) ~ 3, + ; log(number of states) + f, log(amount of data)

Fitting and hyperparameter selection

We fit separate MoSeq models and thus separate shMoSeq models for each dataset in the paper (see Table 2 for a list of datasets). In
each case, wesetos = og = 1,8 = 1and performed 500 Gibbs iterations, at which point we always observed a plateau in the held
out log likelihood. We note that while 500 Gibbs iterations is enough to obtain a reasonable point estimate of the model parameters,
we do not observe full mixing, so the outcome of fitting should not be viewed as a representative sample from the posterior distri-
bution of the model. To determine the stickiness parameter and the total number of states for each dataset, we performed a two-
parameter grid scan and fit 5 to 10 models for each parameter combination. Models were fit using 75% of the data and held-out prob-
abilities were computed using the remaining 25% of the data. Across datasets, we found that the held-out probability tended to peak
for intermediate values of the stickiness parameter; in each case, we used this peak to choose a stickiness value for the final model.
Choosing the number of shMoSeq states

When scanning over the number of states, held-out likelihood typically rose monotonically with state number and therefore could not
be used to pick a final state count. This is similar to MoSeq, where likelihood increases monotonically with the number of syllables. We
therefore turned to cluster stability — which measures the consistency of state assignments across independent model fits. Our
reasoning was that under-counting states would force shMoSeq to arbitrarily merge different behaviors, and this might occur differ-
ently on different model runs. Similarly, over-counting states would force shMoSeq to arbitrarily split behaviors, which again might
lead to instability across model runs. Stability was calculated as follows. For each candidate number of states, we fit 5 to 10 inde-
pendent models at the optimal stickiness and then calculated pairwise similarity (adjusted rand index'?") between the resulting state
sequences. A consensus sequence was selected based on average similarity to other sequences in the ensemble, and its average
similarity was reported as the “cluster stability.” We selected the consensus sequence with greatest cluster stability for downstream
analysis (Figure S2F). After selecting a final model, we excluded states that occupied fewer than 1% of all timepoints. States were
named post hoc based on inspection of videos and analysis of syllable usage.

It is important to note that for most datasets, there will be multiple valid choices for the number of states. Cluster stability provides
one heuristic, but other considerations may be appropriate given the specific biological question. It may be a useful exercise to vary
the number of states and observe how behaviors are split and merged as a result. For example, in our initial open field dataset (for
which 5 was the optimal number of states), a 4-state model merged social engagement with exploratory locomotion, whereas a
6-state model split social engagement into two states with different velocity distributions (Figures S2H and S2I). Importantly, how-
ever, the timing of state transitions was very consistent across a wide range of state counts (Figure S2J), which suggests that the
underlying notion of long-lived behavioral states does not depend on any specific level of coarse-graining.

Breadth of neural tuning

Lifetime sparseness

Lifetime sparseness (Figure S4B), which measured the breadth of neural tuning®® was calculated as follows, where rj denotes the
average activity of neuron i during timepoints assigned to statej (1 < j < m):

mean(ry, ..., fim)°
mean(r3, ....r2)

~olim

sparseness(neuroni) = 1 —

State decoding from top-N sparsest or least sparse neurons

To test the relative contribution of sparsely tuned versus broadly tuned neurons to behavioral state decoding, we ranked neurons by
sparseness and then computed decoding accuracy using only the top N most sparse neurons or bottom N least sparse neurons for
varying N (Figures S4C and S4D). In each of these cases, neurons were re-ranked based on the specific training data from each step
of k-fold cross-validation to prevent leakage between the training and testing datasets.
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State decoding from top-N most informative neurons

To test the relative contribution of highly informative versus weakly informative neurons to behavioral state decoding, we ranked neu-
rons based on the MI between neural activity and behavioral state and then computed decoding accuracy using only the top N neu-
rons for varying N (Figure S4D). To calculate Ml for a given neuron, its activity was discretized into quartiles. As above, Ml was re-
calculated based on the specific training data from each step of k-fold cross-validation to prevent leakage between the training
and testing datasets.

Decoding models

Decoding analyses were performed using either ridge regression (for continuous variables) or logistic regression (for discrete vari-
ables) with Z-scored neural activity traces as input. Models were implemented using scikit-learn version 1.2.2."°? Measurements
of accuracy were performed using 5-fold cross validation. To prevent leakage between neighboring frames, recordings were split
into non-overlapping blocks of 1-5 minutes each and each block was randomly assigned to one of five groups; this yielded a
5-way partition of the recording that was used for cross-validation. For continuous variables, accuracy was quantified as the Pearson
correlation between true and predicted values of the decoded variable. For discrete variables, accuracy was quantified using area
under the receiver operating characteristic curve (auROC).

Analysis of single-neuron behavior associations

Significant associations between individual neurons and behavior variables were computed using an auROC-based approac
To compute auROC, we treated behavior as a binary “outcome” and neural activity as a continuous “predictor”. To determine sta-
tistical significance, the auROC was recalculated across 1000 cyclic permutations. P-values were computed relative to this simulated
null distribution and then transformed using the Benjamini-Hochberg procedure to control the false discovery rate.

40,123
h.™

Neural encoding models

To understand if neurons contain information about states that is independent of instantaneous kinematics, we constructed encoder
models that predicted neural activity from kinematics, syllables, and states or just kinematics and syllables (Figures 3H, 3I, and S5C-
S5E). Prediction was performed using ridge regression. The kinematic variables included height, centroid velocity, and angular ve-
locity. Syllables were encoded one-hot. States were represented by their marginal probabilities. Thus the final design matrices had
dimension (3 + num syllables) or (3 + num syllables + num states). In one case (Figures S5F and S5G), we also included four world-
centric variables in both encoders (distance to wall, egocentric direction to wall, proximity of conspecific, egocentric angle to conspe-
cific). Accuracy was assessed using the correlation between true and predicted neural activity. A neuron’s accuracy was considered
significant when it exceeded the 95™ percentile of a shuffle distribution generated via cyclic permutation. Neurons were only included
in downstream plotting and analysis if predictions from both encoder models were significant. For the recording- and mouse-level
comparisons in Figure S5E, we only included recordings where at least 10 neurons met this criterion.

Neural activity manifolds

To generate low-dimensional representations of neural activity, we binned neural activity in non-overlapping half-second intervals,
normalized with a rolling Z-score (using a 20 minute window) and then performed PCA to 5 dimensions. Projection into 2D was then
performed using Uniform Manifold Approximation and Projection (UMAP).""" To visualize behavioral features in the 2D map while
minimizing the impact of crowding/plot-order, we superimposed a square lattice and generated a heatmap by averaging the values
within each lattice cell. To quantify neural segregation of different behavioral partitions, we computed the modularity'** of this parti-
tion with respect to the k-nearest-neighbor graph of neural activity 5D PCA space. Specifically, for each timepoint we counted the
proportion of its 500 nearest neighbors that shared the same label and then computed the average of this proportion across all time-
points. We repeated this procedure for a shuffled partition and finally defined a “segregation index” as the difference between real
and shuffled values. To minimize the effect of autocorrelation in the neural signal, we restricted analysis to neighbors that were far
apart in time. Specifically, each recording was split into two subsets (“A” and “B”) consisting of alternating 10 min blocks separated
by one-minute gaps. For each timepoint in “A”, we only considered nearest neighbors from “B” (and vice versa). This ensured that all
edges linked timepoints separated by at least one minute.

Mapping behavioral states to neural principal components

To determine whether behavioral states constitute the dominant axes of neural activity, we compared the neural activity vectors
associated with each state to the top-ranking neural principal components (PCs) (Figures S4G-S4l). State-associated vectors
were defined through least squares regression as follows. Let Z, ; represent the activity of neuron n at timepoint t, and let P;; repre-
sent the marginal probability of state i and timepoint t. The vector associated with state / was defined by

2
v; = argmin,y (P,-_, - ZZMV,,>
t n
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Analysis of stereotypy in neural trajectories

To determine if neurons were preferentially active during a certain phase of a behavioral state (Figure S4K), we used the following
time-warping procedure. For each neuron that was tuned to a particular state, we collected all instances of the state between
5 and 60 seconds in duration and placed them on a common timeline using linear time-warping. This yielded a matrix Z;; of neural
activity across instancesi = 1, ..., N and warped timepoints t. If a neuron is preferentially active at particular times within each state
instance, then the column-wise mean of this matrix should significantly deviate from a flat line. To assess this possibility, we
computed the following test statistic for real data and for shuffle data in which the rows of Z;; were cyclically permuted.

>z
i

This yielded a P-value for each neuron/state pair. The P-values were then transformed using the Benjamini-Hochberg procedure to
control the false discovery rate.

test statistic = Z
t

Analysis of relative wall position during open field exploration

Definition of relative wall angle and direction

At each timepoint, we calculated a “wall-vector”, defined as the vector that points toward the mouse’s centroid and originates at the
nearest point on the wall. We then defined the “egocentric wall angle” as the angle between the wall-vector and mouse’s heading
vector; this angle was 0° when the mouse pointed away from the wall, 180° when the mouse pointed toward the wall, and +90° when
the mouse was parallel to the wall. Relative “wall direction” was then defined as the cosine of the egocentric wall angle.

Wall distance and proximity

To capture how close the mouse was to the wall, we defined two metrics: “wall distance” and “wall proximity”. Wall distance was
defined as the distance from the mouse’s centroid to the nearest point on the wall. “Wall proximity” was a function of wall distance:

Il dist -
wall proximity = — tanh (w)

do

where dg was 2.5 cm (Figure S6B); this function was designed to magnify variation near 0 and disregard fluctuations in wall distance
when the mouse was far from the wall.

Definition of direction-tuned and proximity-tuned neurons

Neurons tuned to wall proximity or wall direction were identified using the auROC-based method described in “analysis of single-
neuron behavior associations”. This entailed defining binary variables and testing whether neurons were more or less active than
chance during the on-times for each variable. Wall proximity was represented as a binary variable by thresholding wall distance
at 5 cm. Wall direction was represented as a pair of binary variables by thresholding below -0.8 or above 0.8.

Analysis of aggression experiments

Annotation of aggressive episodes

We used manual labeling to identify instances of aggression in behavioral videos. Labeling was performed on a frame-by-frame ba-
sis. Frames were included if they contained any of the following behaviors. Aggression bouts were defined as continuous blocks,
ignoring gaps of less than 500ms.

- Chasing: One mouse actively pursues another at high speed.

- Pouncing: One mouse lunges or leaps towards another.

- Mounting: One mouse climbs onto the back of another.

- Tumbling: Mice become entangled and roll or tumble together at high speed.

- Boxing: Mice rear and face each other, usually with one in a defensive posture.

Visualization of pre- and post-aggression behavior state probabilities

For visualization of pre-, mid-, and post-aggression behavioral state probabilities (Figure 5B), we included all aggression bouts where
no aggression occurred in the preceding or succeeding 15 seconds respectively. Since aggression bouts have variable duration,
mid-aggression state probabilities were linearly time-warped to a common duration of 10 s.

Regressing neural activity against wall direction and proximity (aggression experiment)

When assessing whether neural responses to wall direction or proximity were altered by the presence of an aggressor (Figures 5F-5I),
we tried to minimize the effect of correlations between behavioral variables (e.g. mice tended to be close to the wall and parallel to the
wall at the same times). Specifically, we isolated the effects of distance to the wall by restricting to timepoints when mice were already
parallel to it (jcos(egocentric wall angle)|> 0.9) and isolated the effects of angle to the wall by restricting to timepoints when mice
were already close to it (within 2 cm). Furthermore, to emphasize state-dependent (rather than motor-dependent) responses, we
excluded from analysis all timepoints when the subject mouse was actively being attacked.
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Wall-related activity in each behavior state (aggression experiment)

To assess wall-related activity in each behavioral state (Figures 5D and 5E), we restricted to timepoints when mice were near the wall
(within 2 cm) and parallel to it ((jcos(egocentric wall angle)|> 0.9) and excluded timepoints when mice were being actively attacked.
Mean activity of wall-direction-tuned neurons was calculated using the subset of neurons that preferred the current wall direction at
each timepoint.

Analysis of novel object experiments

Object tracking

To track object bounding boxes, we trained a yolov5 object detection neural network.'>> Post processing of object detections varied
depending on the dataset type. For videos where every object was unique, we: (1) filtered out detections with confidence below 0.7;
(2) denoised the remaining detections using a 4-second median filter; (3) performed linear interpolation to fill in missing detections.
For videos where all the objects were identical, we: (1) filtered out detections with confidence below 0.5; (2) filtered out frames where
the number of detections differed from the true number of objects; (3) tracked object identifies over time by maximizing pairwise inter-
section-over-union with the Hungarian algorithm; (4) performed linear interpolation to fill in missing detections. In both cases, we
defined object locations by the centroids of the resulting bounding boxes.

Definition of object-associated syllables

To identify syllables that occurred with greater than chance frequency in the vicinity of objects (Figure S3I), we calculated - for each
syllable — what fraction of instances occurred while the mouse’s nose was within 6 cm of the object centroid. Syllables were deemed
significant if this fraction exceeded the 95 percentile of a shuffle distribution generated through cyclic permutation of the mouse’s
tracking data. “Object-associated syllables” were defined as the set of 5 syllables exceeding this significance threshold, with the
exclusion of one syllable that consisted entirely of grooming.

Definition of object distance and proximity

We defined distance to an object as the planar distance between the x/y coordinates of the mouse’s nose and the x/y coordinates of
the object centroid. When multiple objects were present, we used the distance to the closest object. “Object proximity” was a func-
tion of object distance:

object proximity = — tanh (ObJeCt distance — do)

do

where dp was 2.5 cm (Figure S5B); this function was designed to magnify variation near 0 and disregard fluctuations in object dis-
tance when the mouse was far from an object. Because tanh has an asymptote at -1, we set object proximity = -1 when no objects
were present.

Neural activity related to object proximity

Neurons tuned to object proximity were identified using the auROC-based method described in “analysis of single-neuron behavior
associations”. As the target variable, we used a binary indicator that was 1 when any object was within 3 cm and 0 otherwise. When
regressing neural activity against object proximity (Figures S6N and S60), we excluded recordings with fewer than 5 object-tuned
neurons and state/recording pairs that contained very few object interactions (i.e. where object distance fell below 6 cm in fewer
than 10% of frames). The number of recordings that passed this filter varied from 8 to 16 depending on the behavioral state.
Decoding of object proximity

When comparing the accuracy of object proximity decoding across states (Figure 4M), we only included recordings where object
proximity could be decoded with above chance accuracy when assessed using all frames. Specifically, the correlation between
true and predicted object proximity had to exceed the 95" percentile of a shuffle distribution (N=17 recordings satisfied this criterion).
Decoding of object identity

When training and testing decoding models for object identity (Figures 4N and 40), we restricted to timepoints when mice were within
threshold distance to one and only object, and also facing that object. The distance threshold varied from 1 cm to 6 cm; Figure 4N
shows results for 1 cm, and Figure 40 shows results across the full range of thresholds. We classified a mouse as ‘facing’ a target
object if it deviated from the mouse’s heading angle by less than 30 degrees. Analysis was restricted to the first three objects added to
the arena, since the last two objects were absent for most of the recording.

Analysis of social engagement state

Our initial open field dmPFC recordings were 80 minutes long and contained two 30-minute blocks when a C57 conspecific was pre-
sent. All the analyses below were restricted to these 60 minutes.

Mutual information between subject and conspecific syllables

To characterize the degree of social interaction across behavioral states, we computed the Ml between subject and conspecific
behavior (Figure 2G). To mitigate the effects of sparsity, behavior was represented using coarse-grained syllable labels (N=8 clusters,
defined as described in “kinematic clustering of syllables”). We used bootstrap resampling to quantify uncertainty (N=200 bootstrap
samples). For each resampling round, recordings were sampled with replacement, concatenated, and then filtered by each
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behavioral state respectively for calculation of MI. The same 8-way clustering of syllables was used to calculate the frequency with
which mice performed kinematically similar behaviors at the same time (Figure S3B).

Social distance and proximity

Because subject mice primarily interacted in a ‘nose-first’ manner, social distance was defined as the distance from the nose of the
subject mouse to the centroid of the conspecific mouse. “Social proximity” was a function of social distance:

. - social distance — d
social proximity = — tanh ( 0)

do

where dy was 10 cm. Neurons tuned to social proximity were identified using the auROC-based method described in “analysis of
single-neuron behavior associations”. As the target variable, we used a binary indicator that was 1 when the social distance was
<5 cm and 0 otherwise.

Time-dependent changes in neural activity

To capture temporal changes in the strength of activity elicited by social contact (Figure S6W), we divided each recording into
2-minute bins that tiled the first 10 minutes of each social interaction block. The bins were overlapping and spaced at 30s intervals.
Within each bin, we calculated the average activity of social proximity-tuned neurons during “close” timepoints (social distance
<5 cm) and “far” timepoints (social distance >20 cm). Bins with no “close” or “far” timepoints were counted as missing data. Re-
cordings were only included if the number of social proximity-tuned neurons was >10. Since some decline in activity is expected due
to photobleaching, we also generated a baseline curve (Figure S6X) by calculating the 90" percentile of activity across neurons at
each timepoint and then reporting its average within each 2-minute bin.

Regressing neural activity against distance to conspecific

When regressing the activity of social proximity-tuned neurons against distance to the conspecific (Figures 41 and 4J), we restricted
analysis to recordings with at least 10 social proximity-tuned neurons. Additionally, for each behavioral state, we only included record-
ings where the state occurred for a total of 10s or more. To emphasize state-dependent (rather than trivial motor- or sensory-dependent)
effects, we excluded bouts of aggression and restricted to timepoints when the subject mouse was facing the conspecific.

Tuning to allocentric spatial variables

To determine whether neurons were tuned to absolute location (Figures 4A and S6A), we divided the circular open field into 8 sectors
(like slices of a pie) and then identified neurons that were significantly active in one slice using the auROC-based method described in
“analysis of single-neuron behavior associations”. To determine whether neurons were tuned to absolute heading, we similarly dis-
cretized the mouse’s heading angle into 8 bins and then identified neurons that were significantly active in one bin.

Analysis of tube test dataset
Neural activity and behavior annotations from Kingsbury et al.”™ were obtained upon request to the authors. The dataset consisted of
six sessions, each with multiple tube test trials per session. Each session included simultaneous behavior and neural recordings from
both mice. Three behaviors were annotated: “push”, “retreat”, and “approach”. We treated each mouse/session pair as an inde-
pendent recording and labeled behavior as “self” and “other” accordingly. All analyses were limited to session/behavior pairs where
the behavior decoding had above chance accuracy (P < 0.05); this was assessed by computing an auROC for the true predictions and
100 cyclic permutations. Cross-correlations were between decoded behavior probabilities and binary indicator variables represent-
ing each behavior.

We used kernel regression to characterize neural activity associated with onset versus offset of the “self-push” behavior
(Figure 6C). Decoding models were first trained to predict the probability of “self-push” from heldout neural activity. The decoded
behavior probabilities were then Z-scored and modeled as follows

Psaii —pusn(t) = > _aK;(t — t7°) + Y "pK;(t — t7™) + error
i ij

|.4O

Where [t;’”se’, tfﬁse‘] represent on/off times for the /’th “self-push” bout and «; / §; are onset/offset coefficients for the j’th kernel basis
function. Basis functions were defined by K(t) = tanh((t — to)) for a range of shifts (-0.5s < t; < 0.5s) and slopes (-0.5 < 7 < 0.5).
Parameters were fit using Ridge regression.

Analysis of DLS lesion experiments

Timescale analysis of DLS lesion data (Figure 7J) was performed using the procedure described in “Mutual information analysis of
behavioral timescales”. Data (including syllable annotations) were obtained from Markowitz et al.*® We restricted analysis to record-
ings in an empty open arena, i.e. without a trimethylthiazoline (TMT) or control odor source.

Comparative analysis of egocentric boundary vector tuning

We analyzed egocentric boundary representations in retrosplenial cortex (RSC) using data kindly provided by the authors of Alex-
ander et al.,®® which included rat trajectories, headings, boundary coordinates, spike times, and unit annotations. The data included
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117 recordings with 555 units total, of which 134 were classified as egocentric boundary vector (EBV) cells. Analysis was restricted
wall-tuned neurons in dmPFC and EBV cells in RSC.%®

We assessed neural tuning using egocentric boundary ratemaps (EBRs), which capture responses to boundaries at an array of
locations in egocentric coordinates (Figure 4E). Each map was parameterized as a grid in polar coordinates, and the value at
each grid location represented the expected activity of a neuron given that a boundary was present at that particular distance
and angle relative to the animal (0° = in front, 90° = left, 180° = behind, 270° = right). The grids were spaced with angle increments
of 3° and distance increments of either 2.5 cm for RSC or 1 cm dmPFC (finer spacing for dmPFC reflects the smaller size of mice
relative to rats). We only considered boundary points within a threshold distance equal to one-quarter the width of the area
(380 cm for the RSC dataset, 10 cm for the dmPFC dataset). EBRs were smoothed with a two-dimensional Gaussian kernel (c = 5
bins, truncation = 0.5¢) prior to downstream analysis.

Preferred boundary distance (Figure 4F) was defined as the distance with the highest average activity (i.e. the peak in the EBR).
Angular tuning was quantified using the mean resultant length (MRL), computed as the magnitude of the vector sum across dis-
tance/angle bins weighted by their EBR values. Significance was assessed using a shuffle distribution of MRLs obtained by cyclically
permuting neural activity; observed MRLs were Z-scored against this null distribution (Figure 4E).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were conducted with Python using scikit-learn, statsmodels, and NumPy/SciPy. Statistical tests, P-values,
measures of uncertainty, and sample sizes (N) for each panel are reported in the corresponding figure legends. Unless noted in
the legends, the independent unit of analysis (N) is a recording/session. All hypothesis tests were two-sided with a=0.05 unless stated
otherwise. Mann-Whitney U tests were used to compare the means of populations. Multiple comparisons were controlled using the
Benjamini-Hochberg false discovery rate (FDR) procedure where families of tests are performed (e.g., per-neuron screening or per-
state comparisons); the legend specifies when FDR is applied. In all boxplots, the box and center line correspond to the median and
interquartile interval respectively.

ADDITIONAL RESOURCES

ShMoSeq documentation page with installation instructions, example datasets, and step-by-step tutorials for fitting models and se-
lecting hyperparameters: https://state-moseq.readthedocs.io
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Figure S1: MoSeq analysis reveals long-range structure in behavior, related to Figure 1.

(A) Nustration of keypoint-guided segmentation.

(B) Comparison between our keypoint-guided segmentation and Mask-RCNN, a state-of-the-art algorithm for instance
segmentation of images. Accuracy is quantified as intersection-over-union between predicted and human annotated
masks in a set of held out video frames. Each dot represents a recording.



(C) lllustration of the pipeline for missing data imputation. Only the top-camera infrared (IR) channel is shown for
simplicity. Red pixels denote missing data.

(D) Overview of MoSeq syllables derived from solitary and social open field recordings with a C57 conspecific. Heatmaps
show averages for various kinematic parameters during each syllable.

(E) Distribution of syllable durations.

(F) Overall usage of each syllable (sorted for ease of visualization).

(G) Syllable transition matrices at a range of temporal offsets, shown for real data (top) and for simulated Markov chains
with the same transition probabilities (bottom)

(H) Median syllable durations (shown as distributions across recordings) for MoSeq models fit with a range of stickiness
parameters.

() Mutual information (MI) between syllables at a range of temporal lags, shown for real syllable sequences (red),
synthetic sequences drawn from a Markov model with matched transition probabilities (black), and a shuffle noise
floor (gray). Panels correspond to MoSeq models with different stickiness parameters, and therefore different syllable
durations. Line and shading show the median and interquartile interval across recordings (N = 31).

(J) Hierarchical clustering to test whether non-Markovian dynamics depend on the degree to which syllables are coarse-
grained. In this plot, syllables were clustered based on their transition probabilities, i.e. to maximize the probability of
within-cluster transitions as opposed to between-cluster transitions. Results are shown for three different dendrogram
cutoffs. Each heatmap shows a syllable transition matrix, with syllables sorted by cluster membership. Black squares
mark cluster boundaries.

(K) Mutual information (MI) between transition-based syllable clusters at a range of temporal lags, plotted as in (I). Each
panel corresponds to a different level of clustering as shown in (J); level O corresponds to unclustered syllables.

(L) Hierarchical clustering of syllables based on kinematic similarity, as in (J).

(M) Mutual information (MI) between kinematics-based syllable clusters at a range of temporal lags, plotted as in (I). Each
panel corresponds to a different level of clustering as shown in (L), level 0 corresponds to unclustered syllables.
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Figure S2: ShMoSeq captures long-range structure in behavior, related to Figure 1.

(A) Schematic showing how shMoSeq combines state-specific syllable biases with a matrix of baseline transition rates to
generate the syllable transition matrix for each state.

(B) Performance of standard hierarchical hidden Markov models (HHMMs) versus data efficient HHMMs (as implemented
in shMoSeq) when applied to simulated data. Performance is assessed using the adjusted rand score between true
and inferred high-level state sequences. Results are shown for a range of syllable numbers and durations. Line and
shading show mean and 95% ClI across 10 simulated datasets per condition.

(C) Median duration of states output by shMoSeq for different values of the stickiness hyperparameter. Durations are
defined as the time intervals between consecutive state transitions. Black line and shading show mean and standard
deviation across independent model fits (N = 10 fits).

(D) Goodness-of-fit (measured by held-out log likelihood) as a function of median state duration, plotted as in (C).

(E) Held-out log likelihood as a function of number of states, plotted as in (C). The monotonic increase implies that
likelihood is less useful as a criterion for choosing the number of states. A similar phenomenon is observed for MoSeq
(likelihood increases with the number of syllables).

(F) Consistency of state assignments across independent model fits (i.e. “cluster stability”) as a function of the number of
states. Stability peaks at N=5 states, which we used for downstream analysis of this dataset.

(G) Confusion matrix showing agreement between independent shMoSeq fits with N=5 states. Density along the diagonal
is consistent with high cluster stability, as shown in (F).

(H) Confusion matrices comparing state assignments from a 5-state model to those from a 4-state model (left) and 6-state
model (right). Social engagement is split into two different states (5 and 6) in the 6-state model, whereas it is merged
with exploratory locomotion in the 4-state model.

(I) Velocity distributions for states 5 and 6 from the 6-state model (which correspond to social engagement from the 5-
state model). State-6 captures high velocity behaviors.

(J) Cross-correlation in transition timing between models with the same number of states versus those with different
numbers of states. We fit 10 independent models per number of states. For each model, we computed per-timepoint
transition probabilities by sampling an ensemble of state sequences; these probability time-series were used for
calculating cross-correlation. Each line shows the average across all pairwise comparisons with the indicated number

of states. The fact that the lines are close together implies that models with different numbers of states still agree on
transition timing.



(K) Classification accuracy when behavioral states are predicted from syllable frequencies in an N-second window, shown
here as a function of N. Accuracy is reported using area under the receiver operating curve. Chance accuracy is
shown in gray.

(L) Uncertainty in the timing of state onset. Each row corresponds to a single state transition and shows the marginal
probability of the next state.

(M) Example interval showing uncertainty in transition timing. Top: marginal probability of each behavioral state. Bottom:
MoSeq syllables sorted according to the state in which they occur most often. Gray boxes indicate the final state
sequence output by shMoSeq.

(N) Log probability of models that were fit to random subsets of the available data and then applied to the full dataset.
Line and shading represent mean and standard deviation across 10 independent model fits. All models shared the
same median state duration and number of states (N = 5).

(O) As (N), but here showing similarity between models fit to subsets of the data and a final model that was fit to the full
dataset. Similarity was defined as the adjusted rand index between the models’ respective state sequences. The
elbow at 10 hours suggests that = 10 hours of data are needed for shMoSeq.

(P) Modeling results for a separate dataset of open field behavior (Markowitz, 2023), plotted as in (N). Each color
represents a different number of states used for fitting.

(Q) As (P), but here showing similarity between models fit to subsets of the data and a final model that was fit to the full
dataset. The plateau around 40 hours [also visible in (P)] suggests that = 40 hours of data is ideal for shMoSeq,
although results may continue to improve beyond this point when the state number is high (i.e. = 6 states).

(R) Optimal value of the stickiness parameter (i.e. value yielding the highest model probability) for models with different
numbers of states. All models were fit to the full dataset from (Markowitz, 2023).

(S) Optimal value of the stickiness parameter for models fit to different-sized subsets of the (Markowitz, 2023) dataset.
Results are shown for three different numbers of states.

(T) Output of a linear regressor that predicts the optimal value of kappa based on the number of states and amount of
data used for fitting.
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Figure S3: Affordances sculpt behavioral states, related to Figure 2.

(A) Correlation between velocity of the subject mouse and C57 conspecific, calculated separately for each behavioral
state. Each dot represents one recording (N = 34, P < 1.4 x 10°, Mann-Whitney U test).

(B) Frequency with which the subject and conspecific express syllables in the same kinematic cluster, plotted as in (A).
(C) Probability of behavioral states given spatial landmarks. Heatmaps show the conditional probability of each state as a
function of (left) egocentric wall angle, (middle) wall distance, and (right) distance to a conspecific. In most cases,

multiple states are compatible with a given landmark location.

(D) Receiver operating characteristic (ROC) curves comparing classifiers trained to predict behavioral states from
landmark locations (black, AUC = 0.79) versus syllables (gray, AUC = 0.96). Dashed line denotes chance.

(E) Goodness-of-fit (measured by held-out log likelihood) as a function of median state duration, shown for shMoSeq
applied to the novel object experiment. Black line and shading show mean and standard deviation across
independent model fits (N = 10 fits).

(F) Distribution of state durations, defined as the time intervals between consecutive state transitions.

(G) Distribution of nose heights during each behavioral state from the novel object experiments.

(H) Power spectral density of keypoint velocities, stratified by behavioral state. The 10Hz peak for the nose keypoint
represents sniffing. The 2-3Hz peak for the forelimb/hindlimb keypoints corresponds to locomotion.

(I) Syllables ranked by fraction of time near objects (nose-to-object distance < 6 cm). Dots and error bars show means
and 95% CI across recordings (N = 21). Dashed lines mark the threshold for significance (P < 0.05, permutation test).

(J) Total usage of object-associated syllables within each behavioral state, plotted as in (A) (P < 7 x 107, Mann-Whitney
U test).

(K) Top: time-varying probability of being near the most recently added object (top row) or the two previously added
objects (bottom rows), where near is defined as within 3 cm. Bottom: time-varying probability of simultaneously being
near an object and expressing the local investigation state.

(L) Direct comparison between social interaction and object investigation. Mice were recorded in the novel object assay
or during hour-long sessions in the presence of a female BALB/cJ conspecific. In both cases, we captured 3D
keypoints and characterized behavior using shMoSeq. Heatmaps show the locations of objects (top) and conspecifics
(bottom) in the subject mouse’s egocentric reference frame. The heatmaps along each row correspond to the six
behavioral states identified by shMoSeq.



(M) Top: fraction of time near objects (nose-to-object distance < 5 cm) during each behavioral state. Bottom: fraction of
time near conspecifics (nose-to-nose or nose-to-tail distance < 5 cm) during each behavioral state. Each dot
represents one recording (N = 16). State #3 is enriched near objects and state #4 is enriched near conspecifics (P <
0.01, Mann-Whitney U test).

(N) Usage of each syllable in the object-associated state versus the conspecific-associated state. The solid lines
represent equal usage in both states. Dots correspond to syllables, with colors representing the average nose height
(left) or forepaw height (right) during expression of that syllable.

(O) Left: Average keypoint trajectories for syllables shown in (N), including a conspecific-associated syllable (top) and an
object-associated syllable (bottom). Right: example video frames showing each syllable respectively.
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Figure S4: Neural encoding of syllables and behavioral states, related to Figure 3.

(A)

(B)

(©)

(D)

(E)

(F)

Left: proportion of neurons significantly active in one, two, three or four states, normalized by the number significantly
active in at least one state; plots show the distributions of these fractions across N = 31 recordings. Right: as (left) but
here for neurons that are significantly inhibited (FDR < 5% for significantly active or inhibited neurons).

Distribution of lifetime sparseness across all neurons that were significantly modulated by at least one state (1 =
perfectly selective, 0 = completely non-selective).

Accuracy of behavioral state decoding using the 100 sparsest neurons, the 100 least sparse neurons or 100 random
neurons from each recording respectively, showing the mean and 95% CI across recordings (N = 31).

Left: Accuracy of behavioral state decoding using either the top-N sparsest neurons (left) or the top-N most
informative neurons (right) from each recording, shown as a function of N. Informativeness was defined as the mutual
information (MI) between neural activity and behavioral states. Line and shading show mean and 95% CI across
recordings (N = 31).

Distributions of states (left) versus syllables (right) across 2D UMAP projections of neural activity. To ensure a fair
comparison, syllables were kinematically clustered to match the number of states. Each row corresponds to a different
session from the initial open field recordings with a C57 conspecific. Heatmaps depict probabilities within local
regions.

As (E), here showing example recordings from the novel object experiment.



(G) Procedure for mapping behavioral state-defined axes of neural activity to neural principal components (PCs). Each
timepoint is represented by a dot in neural PC space. Dots are colored by the marginal probability of a given
behavioral state, and a vector shows the direction along which this probability increases (computed by regressing the
probability against neural activity). Projections of this vector onto each PC yield the “dot products” shown in (H) and
(.

(H) Dot products between each behavioral-state-defined axis (row) and each neural PC (column). Results are shown for
true and cyclically permuted state probabilities.

() Summary of dot products shown in (H). Line and shading represent the mean and 95% CI across recordings (N = 31).

(J) Overlap in neural activity across a fixed time lag, showing the average across state transitions from each recording.
Overlap was quantified as the number of neurons active at both timepoints (“active” defined by z-scored AF/F = 1)
divided by the number active at either timepoint.

(K) Proportion of neurons that are active at a consistent timepoint between state onset and offset. Each neuron was
assigned a P-value based on the specificity of its activity compared to a shuffle distribution; the distribution of these P-
values is plotted with a cutoff at P = 0.05.

(L) Accuracy of dmPFC-based state decoding models versus heldout log likelihood (which is computed by shMoSeq
independent of neural data). Each dot represents an independent model fit. Colors show the stickiness parameter
used during fitting. Partial correlation controls for the stickiness parameter.

(M) State decoding accuracy as a function of the stickiness parameter (number of states was held constant at N = 5). Line
and shading represent mean and 95% CI across 10 independent model fits. Arrowhead marks the optimal stickiness,
which we used for downstream analysis.

(N) State decoding accuracy as a function of the number of states [stickiness was held constant at the optimal value
shown in (M)]. Line and shading as in (M). Arrowhead marks the number of states (N = 5) that was used for
downstream analysis. Note that a tonic decline in decoder performance is expected when increasing the number of
categories to be classified given the same dataset.
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Figure S5: Encoding of affordance-related variables, related to Figure 3.

(A) Segregation in high-dimensional neural activity space (see Methods) for states and syllables respectively. To ensure a
fair comparison, syllables were kinematically clustered to match the number of states. Each dot represents a
recording (N = 31, P <4 x 10°, Mann-Whitney U test).

(B) Accuracy of decoders trained to predict states versus syllables using population activity in dmPFC. Syllables were
grouped by kinematic similarity to match the number of states. Plotted as in (A) (P = 6 x 10, Mann-Whitney U test).

(C) Accuracy of encoders with access to syllables and kinematics (x-axis) versus those with access to syllables,
kinematics, and states (y-axis). Left: encoding accuracies for dmPFC neurons during non-social timepoints from our
initial set of open field recordings. Right: encoding accuracies for dmPFC neurons from the novel object experiment.

(D) Average encoding accuracy for models with or without access to states, shown for real and circularly permuted data.
Each dot represents a recording from our initial open field recordings (all timepoints, N = 31). The addition of states
increased accuracy for real but not shuffled data (P = 2 x 107®)

(E) Left: Fraction of neurons that were better-predicted by an encoding model with access to states versus one without.
Results are shown for (1) the initial open field recordings in dmPFC with a C57 conspecific (all timepoints); (2) the
same experiment but restricted to timepoints with no conspecific present; (3) dmPFC recordings with novel objects;
(4) DLS open field recordings. Each dot represents a recording (21 < N < 31). Fractions are significantly above
chance in all three dmPFC datasets (P < 2 x 10, one sample t-test), but not the DLS dataset. Right: Subject-wise
averages of the fractions shown on the left. Each dot represents a subject animal (6 <N <18, P <2 x 10*%)

(F) Accuracy of encoders with access to syllables, kinematics, and landmark locations (x-axis) versus those with access
to same variables plus states (y-axis). Each dot represents a dmPFC neuron from our initial set of open field
recordings.

(G) Mean difference in accuracy for encoding models with versus without access to states [as described in (F)]. Each dot
represents a recording (N = 31). Data are shown for real and circularly permuted data. The mean change in accuracy
for real data is significantly greater than zero (P < 7 x 108).

(H) Correlations between various kinematic variables and their values decoded from dmPFC or DLS respectively.
Neurons from each recording were down-sampled and the results are plotted as a function of the number of neurons.
Lines and shading show mean and 95% CI across down-sampled recordings (11 < N < 31).

() Accuracy of decoders trained to predict states (top) or syllables (bottom), plotted as in (I). DLS data are grouped by
cell type (direct pathway: D1-Cre, indirect pathway: A2a-Cre).

(J) Timescale of kinematic encoding in dmPFC (left) and DLS (right). Each plot shows the correlation between decoded
values of a kinematic variable and true values after smoothing with a Gaussian kernel. Lines and shading show mean
and 95% CI across recordings. Pointers mark peak correlations. Shuffle correlations from cyclically permuted data are
shown in gray.

(K) Autocorrelation of neural activity, showing median and inter-quartile interval across neurons from dmPFC and DLS
respectively. The dotted line shows the decay time of the calcium indicator GCaMP6f (Chen et al., 2013).

(L) Distributions of autocorrelation decay times for dmPFC and DLS neurons respectively, defined as the time required for
the autocorrelation to fall below e 1.
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Figure S6: Encoding of affordance-related variables, related to Figures 4 and 5.
(A) Probability that neurons are tuned to each behavioral state given that they are tuned to a particular spatial or
affordance-related variable (FDR < 5% for significantly tuned neurons here and throughout figure). Heatmaps are
derived from the open field recordings with a C57 conspecific (left) and the novel object recordings (right) respectively.
(B) Relationship between wall distance and wall proximity. Proximity is defined by the function: proximity =
tanh((distance — d,)/d,)) where d,, is 2.5 cm.
(C) Average activity of wall direction-tuned neurons, stratified by distance to the wall, calculated at timepoints when the
wall was on each neurons’ preferred side (black) or non-preferred side (gray). Each dot represents a recording

(N=31).

(D) Slopes and intercepts for best fit lines as shown in (Fig 4C), calculated for each recording separately (one dot per
recording, N=31, P < 5 x 10°%, Mann-Whitney U test).



(E) Correlation between true and decoded wall direction, stratified by linear velocity, angular velocity, and wall distance
respectively. Each dot represents a recording (N=31).

(F) Neural activity as a function of egocentric boundary angle, shown for egocentric boundary vector cells in RSC (left)
and wall-tuned neurons in dmPFC (right). Rows of the heatmap correspond to egocentric rate maps [as shown in (C)]
that have been averaged along the distance axis, unwrapped along the angle axis, and then Z-scored. To ease
visualization, we used a random subsample of dmPFC neurons when generating the right heatmap.

(G) Duration distributions for social-contact bouts from each behavioral state. Bouts were defined as continuous intervals
during which the subject mouse was within 5 cm of the conspecific and facing in its direction (angle < 30°). This
comparison addresses the hypothesis that sustained interaction bouts are required for socially-related activity to fully
develop.

(H) Activity of socially-tuned neurons as a function of bout duration.

() Average activity of socially-tuned neurons across bouts of different durations, stratified by behavioral state. Shading
represents 95% CI. The modest rise in activity with increasing bout duration suggests that bout duration contributes
(weakly) to state-dependent differences in socially-related neural activity.

(J) Distributions of “contact probability” across bouts from each state. “Contact probability” was defined as the probability
of social contact during a 30 second interval centered on a given bout. This comparison addresses the hypothesis that
high-frequency bouts are required for socially-related activity to fully develop.

(K) Activity of socially-tuned neurons as a function contact probability.

(L) Activity of socially-tuned neurons across bouts with different contact probabilities, plotted in (L). The convergence of
activity levels when bout probability is high suggests that bout probability contributes strongly to state-dependent
differences in socially-related neural activity.

(M) Distribution of distance to conspecific for timepoints that are either within 30 seconds of the social engagement state
(left) or outside this radius (right).

(N) Average activity of neurons tuned to object proximity (y-axis) as a function of object proximity (x-axis), stratified by
behavioral state. Plots show the distribution of activity levels for each proximity-level. In all states, neural activity is
higher when mice are closer to an object, but the slope and intercept of this relationship are higher during the object
investigation state, as indicated by the dashed best-fit lines.

(O) Intercepts at distance = 0 of best-fit lines shown in (H), but now calculated separately for each recording. Each dot
represents a recording with at least 5 object-proximity-tuned neurons and sufficient object interactions within a state
(see Methods, 8 < N < 16). Boxes show medians and interquartile intervals. Intercepts are highest for the object
investigation state; this difference is significant with respect to all states except locomotion (P < 0.04, Mann-Whitney U
test).

(P) Timing of aggressive episodes for an example recording from the CD1-aggression dataset.

(Q) Syllables used in each behavioral state from the aggression dataset.

(R) Distributions of kinematic and spatial variables across shared behavioral states from two different datasets: the initial
open field recordings with a C57 conspecific (red, explored first in Figure 1); and the aggression recordings with a
CD1 conspecific (green, explored in Figure 5).

(S) Similarity of behavioral states across datasets. For each pair of states, we computed KL divergences for the three
variables shown in (R) and the average-of-three in the heatmap. Stars mark the minimum KL divergence (i.e. most
similar state) in each row. Uniformly high KL divergences with the defense state indicate that it is unique to the CD1
aggression dataset (featured in Figure 5).

(T) Mean direction (top) and distance (bottom) to the wall during each behavioral state from the aggression dataset. Each
dot corresponds to a recording (N = 4).

(U) Median direction (top) and distance (bottom) to the wall during each block type from the aggression dataset. Each dot
corresponds to one block (N = 16).

(V) Correlation between true and decoded wall direction, calculated separately for each block, shown as in (U) (P <
0.002, Mann-Whitney U test).

(W) Mean activity of neurons tuned to social proximity (from dmPFC recordings with a C57 conspecific), calculated during
times when the conspecific was close (< 5 cm) or far (> 20 cm). Line and shading show mean and 95% CI across all
recordings with at least 10 proximity-tuned neurons (N = 20).

(X) 90" percentile of activity across all neurons, plotted as in (W). The shallower decay indicates that the effect in (W) is
not due to photobleaching.

(Y) Correlation between true and decoded social proximity for the first 30-minute social block (x-axis) versus second block
(y-axis) of each recording with a C57 conspecific. Correlations are significantly lower for the second block (P = 0.008,
paired t-test, N = 31).

(Z) Mean activity of object-tuned neurons during frames when the mouse is near an object (nose-to-object distance < 3
cm), stratified by the number of objects added to the arena. Line and shading show mean and 95% CI across N = 6
recordings with at least 5 object-tuned neurons from the recordings with unique objects. Results are shown for the
original novel object recordings with unique objects (left) and an additional set of recordings with identical objects

(right).
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Figure S7: Analysis of timing and excitotoxic lesion effects, related to Figures 6 and 7.
(A) Top: average activity of neurons tuned to each behavioral state, aligned to state onset (red), or offset (blue). For each
state, only recordings with at least 10 tuned neurons are included (7 < N < 31). Line and shading show mean and 95%

Cl. Bottom: derivative of

signals shown above.

(B) Top: state probabilities predicted from neural activity, aligned to the onset (red) or offset (blue) of each state. Bottom:
rate of change in the predicted probability. Line and shading show mean and 95% CI across recordings (N = 31).

(C) Cross correlation between the true and dmPFC-predicted probability of each behavioral state. Line and shading show
mean and 95% Cl across N = 31 recordings.

(D) Decoded state probabilities aligned to state onset, as in (B, red). Each line represents a look-ahead decoder that was
trained to predict the state at time ¢ + At from neural activity at time ¢.

(E) Cross correlation between behavioral events (rendered as binary time-series) and the decoded probability of those

events. Data are from (Kingsbury, 2019).

“Self” refers to behaviors performed by the subject mouse and “other” to



behaviors by the opponent. Line and shading show the mean and 95% CI across all recordings where the given
behavior was encoded with above-chance accuracy (3 <N < 10).

(F) Agreement between true and decoded behavioral states across all neuropixels recordings in dmPFC.

(G) Distribution of behavioral states across a 2D UMAP projection of spiking activity from an example recording.
Heatmaps show the probability of behavioral states within local regions of the map.

(H) Raster plots for three example neurons aligned to behavioral state onsets. Top: peri-event time histogram. Bottom:
spike times around each onset event.

(I) Neural trajectories around state transitions (derived from the initial dataset of calcium-based open field recordings).
For each state/recording pair, we calculated a centroid location in neural PCA space. Plots on the left show Z-scored
distance to the centroid of the upcoming (red) or previous state (blue) aligned to state transitions. Transitions were
stratified into quintiles based on the degree of uncertainty in their timing. Plots on the right show the marginal
probability of the upcoming state (derived from shMoSeq); probability increases more sharply when the timing of
transitions is more certain. In all plots, line and shading correspond to mean and 95% CI across recordings.

(J) As (H), here derived from the neuropixels dataset.

(K) Coronal sections from a lesioned mouse, showing nuclei (DAPI) and an astrocytic antibody (GFAP) that highlights the
lesioned area. Numbers indicate anterior-posterior location relative to bregma (ACC, anterior cingulate area; PL,
prelimbic area; ORB, orbital area; IL, infralimbic area; MO, secondary motor area).

(L) Distributions in sham and lesion recordings of (1) distances to the nearest novel object; (2) distances to the wall of the
arena; (3) durations of behavioral states.

(M) Frequency of syllables within each behavioral state from the lesion dataset, calculated separately for control and
lesioned mice respectively.

(N) Results for an additional lesion experiment with a shorter time between surgery and behavior (2 — 3 weeks). The
figure shows mutual information (MI) between syllables at a range of temporal lags. Line and shading indicate median
and interquartile interval across recordings (N = 8 sham, N = 8 lesion). Ml is significantly lower for lesioned mice at the
indicated time-lags (P < 0.05). Pointers show the mean decay time for each condition; note that for this smaller
dataset, the change in decay time is not statistically significant.

O) Distribution of behaviors (defined by hand-labeling of syllables) across the behavioral states.

P) Distribution of wall distances for each behavioral state in the lesion dataset.

Q) Distribution of nose heights for each behavioral state in the lesion dataset.

R) Fraction of time near a novel object (nose-to-object distance < 3 cm) within each behavioral state from the lesion
dataset. Each dot represents one recording with novel objects (N = 10 sham, N = 8 lesion).

(S) Mean state duration (left) and frequency of state initiation (right) in sham and lesioned animals respectively. Dot and

line show mean and 95% CI across recordings (FDR < 5%).

(T) Left: Ml between syllables at a range of temporal lags. Right: probability that syllables from lagged timepoints belong
to the same kinematic cluster. Both plots were restricted to pairs of timepoints lying within contiguous instances of
each state. Shading shows 95% bootstrap Cl over resampled state instances.
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Figure panels Methods section

1D, 1F - 1G, 7B -7D, 7J, S1IL - S1M, S7N, S7T | Analysis of behavioral timescales

3B - 3C, 4A, S4A, S6A Analysis of single-neuron behavior associations

3D - 3E, 3J, 4B, 4D, 4K - 40, 6F — 61, S5B, S5H | Decoding models
— 85J, S6E, S6V, S6Y, S7B — S7F

3F, S4E — S4F, S5A, S7G Neural activity manifolds

3H - 3I, S5C - S5G Neural encoding models

1D, 1F, 2G, 7B, 7J, S1L — S1M, S3B, S4E, S5A— | Clustering syllables based on kinematic similarity
S5B, S7N, S7T

S1J - S1K Clustering syllables based on transition probabilities

Table 1: Methods used for selected figure panels, related to Figures 1-7. Each row shows representative figure
panels that relied on a particular method. Note that this table is not comprehensive. Additional correspondences between
methods and figure panels are provided throughout the Methods section in the form of specific figure callouts.

Description Recording Figure panels

modality
Calcium recordings in dmPFC during Depth 1(all), 2A - 2G, 3(all), 4A — 4K, 6A,
solitary and social open field exploration S1(all), S2A — S20, S3A - S3D, S4A

— S4E, S4H — S4N, S5(all), S6A —
S6E, S6G — S6M, S6R — S6S, SEW —
S6Y, S7TA— S7D, S7I

Calcium recordings in dmPFC during 3D keypoints 2H - 2L, 4A, 4L - 40, S3E — S3K,
novel object interaction S4F, S5C, S5E, S6M — S60, S6Z
Calcium recordings in dmPFC during Depth 5(all), S6P — S6V

exposure to an aggressive conspecific

Calcium recordings in DLS during solitary | Depth 31-3J, 7J, S5E, S5H - S5L
open field exploration

Recordings of lesioned and control mice, | 3D keypoints 7B 71, S7TL—-S7M, S70 - S7T
either in an empty open field or interacting
with novel objects

Neuropixels recordings in dmPFC during | 3D keypoints 6E - 61, S7TF — S7H, S7J
open field exploration

3D keypoint recordings of social 3D keypoints S3L-S30
interaction and object investigation

Table 2: Datasets that were modeled using shMoSeq, related to Figures 1-7. Each row corresponds to one dataset.
To avoid batch effects related to surgical implants, size, sex, and recording modality, separate MoSeq models (and thus
shMoSeq models) were fit to each dataset.
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