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Neuroscience research has evolved to generate increasingly large and complex experimental data sets, and advanced data science
tools are taking on central roles in neuroscience research. Neurodata Without Borders (NWB), a standard language for neurophys-
iology data, has recently emerged as a powerful solution for data management, analysis, and sharing. We here discuss our labs’
efforts to implement NWB data science pipelines. We describe general principles and specific use cases that illustrate successes,
challenges, and non-trivial decisions in software engineering. We hope that our experience can provide guidance for the neuroscience
community and help bridge the gap between experimental neuroscience and data science. Key takeaways from this article are that (1)
standardization with NWB requires non-trivial design choices; (2) the general practice of standardization in the lab promotes data
awareness and literacy, and improves transparency, rigor, and reproducibility in our science; (3) we offer several feature suggestions
to ease the extensibility, publishing/sharing, and usability for NWB standard and users of NWB data.
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Significance Statement

Neuroscience research generates increasingly large and complex data sets, requiring advanced data science tools. Neurodata
Without Borders (NWB), an National Institutes of Health (NIH)-supported standard, is crucial for data management,
analysis, and sharing. Despite its importance, adoption of NWB remains challenging for many labs. This article addresses
practical, technical, social, and institutional aspects of data handling, and discusses common data science challenges in
neuroscience. By sharing real-world experiences, we aim to stimulate discussion among key stakeholders such as tool devel-

-

opers, labs considering NWB adoption, and funding agencies promoting open science.
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Introduction

Increasing complexity of neuroscience data

Opver the past 20 years, neuroscience research has been radically
changed by two major trends in data production and analysis.
First, neuroscience research now routinely generates large data-
sets of high complexity. Examples include recordings of activity
across large populations of neurons, often with high-resolution
behavioral tracking (Mathis et al., 2018; Steinmetz et al., 2019;
Stringer et al., 2019; Siegle et al., 2021; Koch et al., 2022), analyses
of neural connectivity at high spatial resolution and across large
brain areas (Scheffer et al., 2020; Loomba et al.,, 2022), and
detailed molecular profiling of neural cells (Callaway et al.,
2021; Braun et al.,, 2022; Langlieb et al., 2023; Yao et al., 2023).
Such large, multi-modal data sets are essential for solving major
questions about brain function (Jorgenson et al., 2015; Brose,
2016; Koch and Jones, 2016).
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Second, the collection and analysis of such datasets requires
interdisciplinary teams, incorporating expertise in systems neuro-
science, engineering, molecular biology, data science, and theory.
These two trends are reflected in the increasing numbers of authors
on scientific publications (Plume and Weijen, 2014) (https:/the
publicationplan.com/2016/12/13/new-investigation-reveals-the-
number-of-authors-named-on-research-papers-is-increasing)
and the creation of mechanisms to support team science by the
National Institutes of Health (NIH) and similar research funding
bodies (Cooke and Hilton, 2015; Brose, 2016).

There is also an increasing scope of research questions that
can be addressed by aggregating “open data” from multiple stud-
ies across independent labs. Funding agencies and publishers
have begun to aggressively promote data sharing and open
data, with the goals of improving reproducibility and increasing
data reuse (Dallmeier-Tiessen et al., 2014; Tenopir et al., 2015;
Pasquetto et al., 2017). However, open data may be unusable if
scattered in a wide variety of naming conventions and file
formats lacking machine-readable metadata.

Big data and team science necessitate new strategies for how
to best organize data, with a key technical challenge being the
development of standardized file formats for storing, sharing,
and querying datasets. Prominent examples include the Brain
Imaging Data Structure (BIDS; RRID:SCR_016124) for neuro-
imaging and Neurodata Without Borders (NWB; RRID:
SCR_015242) for neurophysiology data (Teeters et al., 2015;
Gorgolewski et al., 2016; Holdgraf et al., 2019; Riibel et al,,
2022). The Open Neurophysiology Environment (ONE), best
known from adoption by The International Brain Laboratory
(IBL; The International Brain Laboratory, 2020, 2023), has a
similar application domain to NWB, but a highly different tech-
nical design. There have been many standards over the years,
including NIX (RRID:SCR_016196)—neuroscience informa-
tion exchange format (Martone et al, 2020), neuroscience
information framework (NIF; RRID:SCR_002894) (Gardner
et al, 2008), minimum information about a neuroscience
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investigation (MINI) for electrophysiology (Gibson et al,
2009), BRAINformat (Ribel et al., 2015), odML (RRID:
SCR_001376; Grewe et al., 2011), Scalable Open Network
Architecture TemplAte for neural models (Dai et al., 2020),
and the recent NeuroBlueprint https://neuroblueprint.neuro
informatics.dev/. Not all standards remain actively used, but
NWRB is one of them. These initiatives provide technical tools
for storing and accessing data in known formats, but more
importantly provide conceptual frameworks with which to
standardize data organization and description in an (ideally)
universal, interoperable, and machine-readable way.

Our labs’ history in implementing NWB-based
standardization
In 2019, the Fleischmann and Ritt labs initiated a collaboration to
enhance the Fleischmann lab’s data science and computational tool-
ing and workflows. We expanded our team by hiring two research
software engineers (RSEs), and by extending collaborations with
data scientists and computational biologists. Similar efforts were
underway in the Datta lab. An early common goal was the standar-
dization of neurophysiology and behavioral data using a framework
such as NWB. In this article, we provide our perspective on oppor-
tunities and challenges when adopting NWB data standardization.
Our labs investigate the functions of neural circuits for sensory
processing and behavior in mice. Typical experiments include cal-
cium imaging of neuronal activity in awake, head-fixed mice during
odor presentation, with a number of behavioral readouts including
sniffing, running, and facial movements (Fig. 1). In other experi-
ments, mice are freely moving, with implanted GRadient INdex
(GRIN) lenses for miniscope imaging, odor and reward delivery
in nose ports, and behavioral readouts including videographic
tracking. Our experimental designs, data generation, and analyses
are similar to many other labs investigating neural circuit mecha-
nisms for sensory-motor transformations, learning, and memory
(Box 1), though each lab has its own idiosyncrasies impinging on
data management.
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Setup of a typical Fleischmann lab experiment and resulting data streams. The left schematic illustrates in vivo head-fixed two-photon calcium imaging of a deep brain area

(e.g., piriform cortex) through a GRIN lens. Throughout the paper, we use the following color scheme: green for neural activity, orange for animal behaviors, and purple for external variables
(e.g., stimuli). Raw images from the microscope (top) are preprocessed to obtain fluorescence time series for each segmented neuron (top row, right). The animal receives odor stimuli through an
odor port during a time window in each trial, marked by a light purple bar in the fluorescence time series plot. Several behaviors are tracked. A high-resolution camera captures facial movement,
typically reduced using the application Facemap into principal components of image motion (middle), or through DeepLabCut into pose estimation or keypoints. Peri-nasal flow and wheel
sensors, connected through a microcontroller, provide respiration and running speed estimates, respectively.
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Choosing which standard to use could be the topic of its own
paper. Here we chose NWB mainly because of our use case of
neurophysiology experiments and popularity among our com-
munities of researchers. Depending on the domain and commu-
nity, researchers can review the guides and portfolio of endorsed
standards maintained by organizations such as the International
Neuroinformatics Coordinating Facility: https://www.incf.org/
resources/sbps.

In this article, we first discuss our motivation and general con-
siderations for implementing data standardization. We then
describe the implementation of NWB data conversion pipelines,
including domain-specific use cases and solutions for data shar-
ing. We conclude by identifying opportunities for improving
future user experience. We hope that by describing our experi-
ence, other labs planning to adopt NWB will benefit from com-
parisons with their own needs and capabilities. We also hope to
provide a case study that may be informative for developers of
NWB and similar data science toolboxes. Furthermore, we
acknowledge that our experience with NWB was on the early
side of the adoption curve, and that many issues we encountered
have been resolved throughout the process. Box 2 summarizes
the key insights from this article.

Box 1. Fleischmann Lab workflow

Data acquisition—experiments and systems We perform
in vivo calcium imaging experiments in head-fixed (2-photon
imaging) and freely moving (miniscope) mice. Experiments
include multi-plane, multicolor, and/or multi-day recordings.

Data acquisition—tasks and stimuli In some experiments,
animals receive pre-programmed odor stimuli independent
of their behavior; in other experiments, sensory stimuli or
an animal’s behavior can trigger a reward. Behavior record-
ing includes micro-controller-acquired time series (e.g.,
wheel speed, sniff rate, licks, and rewards) and video
recordings of the animal’s face or body motion.

Preprocessing Pipelines include conventional calcium imag-
ing steps (e.g., motion correction, segmentation, deconvolu-
tion, multicolor or multi-day registration) using existing tools
such as Suite2p (RRID:SCR_016434; Pachitariu et al., 2016)
and Inscopix (https:/www.inscopix.com/). Experiments with
behavioral videos may also be preprocessed with toolboxes
such as DeepLabCut (DLC, RRID:SCR 021391; Mathis
et al, 2018) for pose estimation and Facemap (RRID:
SCR_021513; Syeda et al., 2022) for facial motion extraction.

Conversion to standard format Raw and preprocessed
data streams are integrated and stored in NWB files, using
a custom tool, calimag (Pierré and Pham, 2023), devel-
oped in the Fleischmann lab.

Analyses Questions include stimulus or behavior tuning of
single neuron or population activity, as well as how learning
and experience shape neural activity.

Box 2. Key insights summary

Standardization with NWB requires non-trivial design
choices (see section “How to organize data into a standard
format”) that have to balance between usability, feasibility,
sustainability, and varying constraints of time, resources,
and experience. This includes considerations at various
stages of scientific work (see sections “When to create and
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use the standardized format” and “Pain points in the conver-
sion workflow”). More specific discussions touch on exper-
iment setup (e.g., section “Our experience with metadata
capture”), preprocessing (e.g., section “How should differ-
ent data types be stored?”), conversion (e.g., sections
“How to organize data into a standard format” and
“Creating NWB extensions allows fitting domain-specific
use cases”), analysis (e.g., sections “Data access pain points,”
“How should different data types be stored?,” “Should one
standardize data from intermediate analysis stages?,”
“Lab-specific metadata,” and “Odor stimulus metadata”),
and publishing (sections “Considerations for sharing on
DANDIL” “Public data sharing,” and “Where should raw
data and supplemental information be stored?”). This makes
data sharing a distinct technique to be mastered by
researchers, similar to scientific writing and scientific
communication.

In addition to technical considerations, there is a signif-
icant social component of adopting the NWB standard
in neurophysiology research (sections “Within a lab,”
“Our experience with metadata capture,” and “Social chal-
lenges in extension development”) across a lab’s different
stakeholders (section “Key stakeholders in adoption of a
new lab standard”) and research collaborators (section
“Collaboration”).

We observe a general practice of standardization that pro-
motes more data awareness and literacy, and improves
communication in our research activities (sections
“Within a lab,” “Collaboration,” “Working with acquisition
devices and software,” “An indirect benefit of using NWB is
improved data awareness,” “Lab-specific metadata,” “Odor
stimulus metadata,” and “Social challenges in extension devel-
opment”), and increases transparency, rigor, and reproduc-
ibility (sections “Collaboration,” “Lab-specific metadata,”
“Odor stimulus metadata,” “Social challenges in extension
development,” and “Public data sharing”).

Compared to many neurophysiology standards, NWB is
well-supported, well-maintained, and its developer team
is very responsive to issues and requests (sections “NWB
community” and “Documentation for extension develop-
ment”). The standard has a substantial and growing eco-
system of tools and resources (sections “Public data
sharing,” “NWB community,” “Neuroscience community,”
“Off the shelf NWB conversion,” “Existing Neurodata
Extensions,” and “Data exploration tool guidance”), which
is especially useful for new adopters.

»

We encountered several unexpected challenges when
working with and developing these open science and
open source tools (sections “Our experience with metadata
capture,” “Editing and merging of NWB files,” “Pain points
in the conversion workflow,” “Timeliness of code contribu-
tion acceptance,” “Wishlist for NWB extensions,” “Potential
surprises with data validation,” and “Modification of file
organization”).

»

To increase usability and accessibility, we propose more
centralized documentation and cataloged discussions on
NWB standard development and the ecosystem around it
(sections “NWB community” and “Documentation for
extension development”). Additionally, we offer several
feature suggestions to ease NWB extensibility (sections
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“Framework extensions” and “Wishlist for NWB exten-
sions”), publishing (sections “Considerations for sharing
on DANDI” and “Alternatives to DANDI and general strat-
egy with data repositories”), and usability (section “Data
access pain points”).

Key Stakeholders in Adoption of a New Lab Standard

We first define, in high-level terms, three distinct personnel roles
in a typical research lab, each of whom has their own needs
and incentives surrounding data standardization. First, Principal
Investigators (PI) and senior researchers manage research teams,
labs, and projects. Second, researchers include research trainees
(e.g., undergraduate and graduate students, postdoctoral associ-
ates), lab technicians, and data scientists, and more generally
individuals collecting and/or analyzing data. Lastly, Research
Software Engineers (RSEs) support researchers by developing
and maintaining software, packages, and pipelines for data man-
agement, processing, and analysis.

PIs
Key desired outcomes for the adoption of lab-wide standardized
data formats include improved efficiency, rigor, reproducibility,
and ease of collaboration. Efficiency could follow from using
common tools for saving, retrieving, analyzing, and sharing
data; technical improvements by one member can have knock-on
value for others. Rigor and reproducibility similarly benefit from
increased access and scrutiny brought by all lab members being
able to see each other’s work, instead of working in isolation;
data already in standard formats could ease communication
and usage. An additional value for PIs is meeting the norms of
their field for data management and sharing, including mandates
from funding agencies such as the NIH, without requiring exten-
sive ad hoc effort at the time of grant submissions or publication.
key objectives: efficiency, rigor, reproducibility, and collaboration
However, there are several concerns when introducing stan-
dardized formats. PIs generally want to avoid major disruptions
to scientific productivity in the lab. There is rarely a good time to
slow or halt data collection and analysis in order to fully convert
to new pipelines and workflows. On the other hand, a gradual
transition can paradoxically lead to greater friction due to the
simultaneous use of multiple incompatible systems. Adoption
of a data standard can be much more than a point-and-click
operation, requiring many decisions about the structure and
use of the data not just as it is now, but also what the PI expects
it to be in the future. One of the first decisions is the standard
itself: it can be difficult to pick a “winner,” as standards may
quickly become incompatible with the lab’s evolving methods.
It is also uncommon to have institutional support, in the form
of grant funding or university staffing allocated to the “low-level”
task of revising data formats, or incentives such as promotion cri-
teria that reward best practices in data management. While RSEs
are increasingly recognized as valuable contributors to the
research enterprise (Carver et al., 2022), most labs still do not
have access to an RSE. This places the burden on students and
postdocs, who are often enthusiastic to adopt new practices but
are constrained by a need to make continual progress in their
own careers. Moreover, lab members, including PIs, generally
lack advanced training to know how to build automated systems
that integrate multiple data streams into a single format with appro-
priate metadata, provide that data for analysis, and share data fol-
lowing community norms such as the findability, accessibility,
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interoperability, and reusability (FAIR) guidelines (Wilkinson
et al,, 2016). Without support, adopting a standard is often a shared
aspiration with little personal buy-in to do the needed work.

Researchers

The main motivation for researchers to adopt standardized data
formats is to improve data analysis and shareability.
Standardized data formats may support efficient and reproduc-
ible data processing and flexible, comprehensive data exploration
and analysis. Efficient data analysis can, in turn, provide critical
information for optimizing experimental design. Furthermore,
standardized formats facilitate data sharing, which can yield
new perspectives on datasets and increase their impact.

A main concern is that data standardization requires a sign-
ificant increase in workload, whether researchers tackle it on
their own or in collaboration with an RSE. The increased work-
load can happen at the experiment and data conversion stages, if
data management standardization comes at the expense of exper-
imental flexibility. At the stage of analysis, researchers may need
to spend time to learn and adapt to the new standard in order to
use the data. Researchers’ diverse backgrounds, the availability/
support of tools for standardized data, and the maturity of their
projects further contribute to tradeoffs between making consis-
tent experimental progress and standardizing experimental out-
puts. In particular, there are limited training opportunities in
scientific computing as a topic in its own right, leaving most
researchers without conceptual frameworks and technical knowl-
edge to properly guide these choices. Additionally, researchers
who decide to embrace standardization, open data, and reproduc-
ible workflows often lack recognition for the added work.

RSEs

RSEs directly support researchers in data management, analysis,
sharing, and publication. Adopting standardized formats estab-
lishes predictability in the data that the researchers produce.
This facilitates communication and makes it easier for RSEs to
efficiently provide support in finding, using, and building appro-
priate systems to interact with the data. RSEs can also take advan-
tage of such predictability to provide sufficient documentation
and usable examples of the data for analysis, sharing, and reuse.

A core challenge is developing stable software implementa-
tions and workflows that are robust to small variations in exper-
imental data, while still allowing flexibility to be useful to
researchers engaged in rapid evolution of diverse experimental
designs. Furthermore, choosing a new technology carries an ele-
vated risk of bugs and missing features. Open source tools can be
particularly unpredictable, and extensive in-house workarounds
may be unsustainable and defeat the original purpose of
standardization.

In addition, researchers and RSEs often come from different
backgrounds. RSEs may not be familiar with scientific priorities
and experimental constraints, and the expectations and timeline
of research projects. Thus, diverging expectations and miscom-
munication between researchers and RSEs can lead to friction
and delay in adopting the standards.

Social Scales of Working with the NWB Standard

Within a lab

It is often desirable for members of a lab to share and use com-
mon technology, including analysis code, data conversion pipe-
lines, and/or acquisition systems. This commonality allows
members to jointly address technical problems, and build on
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top of known solutions with some degree of prior validation,
creating consistency across “generations” of graduate students
and postdocs. For example, in our lab, researchers performing
head-fixed two-photon calcium imaging share the same acquisi-
tion systems and data conversion pipeline, which allows them to
get advice from their peers and to contribute their own solutions
to common pain points.

A potential pitfall of sharing a common set of technologies
may arise when the technology is not well maintained or kept
up-to-date, forcing new projects to build on shaky ground.
Another pitfall may come from the complexity of supporting a
diverse enough set of use cases, and trying to make them all fit
into the same technology.

On-boarding is key to encourage this economy of scale and
self-regeneration of benefits, especially if a standard is not yet
established. For example, rather than introduce NWB to
researchers in new analysis notebooks, we tried to work back-
wards from the analysis pipelines they already used. That is, we
refactored researchers’ existing code by replacing only file load
operations, and converting from NWB structure to whatever var-
iable names and data types the researchers already used (that
often adopted suboptimal data conventions from the original
raw file formats). Further experience with NWB might motivate
changes to those conventions, but in this approach, initial learn-
ing is focused on practical steps whose value is innately recog-
nized by the researcher, rather than on the generic NWB
software interface. Naturally, it could be simpler for new lab
members (or new projects) to start from a standardized “clean
slate,” though our experience is that in practice there is usually
still substantial inheritance of older code and procedures, at least
in an established lab.

The Fleischmann lab uses lab-wide Git hosting (on GitLab),
facilitating internal sharing and collaborative development of
code. Combined with regular lab meeting discussion of data
management and analysis topics, this culture of open communi-
cation and sharing helps disseminate technical progress across all
lab members.

Collaboration

Our experience using NWB to send data to collaborators in other
labs has been more mixed than for internal adoption. While stan-
dardization aims to establish a universal language for data, there
can still be friction for recipients who have not already installed
and used the necessary software, especially in the absence of good
documentation and relevant working examples. We describe two
cases with two different labs performing additional analyses on
data we collected.

In the first case, we provided our collaborators with raw
microscope images as TIFF (tag image file format) stacks and
preprocessed calcium activity time series in NWB format. In con-
trast to our naive initial expectations, it was challenging for our
collaborators to learn how to work with the NWB files. With
hindsight, we should have included working example code that
loaded and displayed data, which they could use as a starting
template for their own work. However, there would still have
been some friction, as their lab works primarily in Matlab, while
we work almost entirely in Python. NWB provides Application
Programming Interfaces (API) for both environments, but we
would have needed to generate example code from scratch,
and the two labs would have maintained two separate code
bases. In the end, our collaborators used only the TIFF stacks,
though partly in order to also work on novel preprocessing
algorithms.
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In the second case, our collaborators had previous experience
with NWB. However, we were still refining our NWB conversion
of that data, and were regularly making code breaking changes.
Hence, we chose to create and send python “pickle” files that con-
tained only a subset of the data, organized to simplify usage on
their end and make it easier for us to create example code and
documentation. As we continued to develop our internal pipe-
lines, this approach hampered code interoperability between
our labs. However, it was the more expedient choice to get the
collaborators up and running. Since then, we have been working
to improve the long-term stability of our NWB conversion pipe-
line, in order to converge on a collaboration strategy built entirely
on NWB standardization. For this project, we and our collabora-
tors have been working off the same NWB dataset, which is cur-
rently embargoed on Distributed Archives for Neurophysiology
Data Integration (DANDI) Archive (https:/dandiarchive.org/
dandiset/000785). The ease of access to the data repository,
accompanied by the availability of a minimal code repository
for accessing and preprocessing (https:/gitlab.com/fleischmann-
lab/calcium-imaging/projection-difference), allows us to perform
analysis of the same dataset independently and to more quickly
share our findings with each other. This increases the reproduc-
ibility and interoperability of our and our collaborators’ analyses.

Our research has also become more rigorous and transparent
as a result of the standard and the sharing of repositories. And the
same reasons have allowed us to more easily discuss data inter-
nally and with collaborators while the data are actually accessible.

Public data sharing

Researchers are increasingly asked to publish their data on public
archives. Apart from publication and funding requirements and
opportunities for collaboration, these public data repositories
increase chances of data reuse, e.g., for education, benchmarking
new tools, computational modeling, or meta-analysis. Popular
repositories include Figshare (RRID:SCR_004328; https:/figshare.
com/), Zenodo (RRID:SCR_004129; https://zenodo.org/), open sci-
ence framework (OSF; RRID:SCR_003238; Foster and Deardorff,
2017, and GIN G-Node (RRID:SCR_015864; https:/gin.g-node.
org/). These are more general repositories, with limited restric-
tions on data formats, though there sometimes could be other
logistical/funding complications.

The DANDI (RRID:SCR_017571) is the recommended choice
for public data sharing of NWB datasets (Halchenko et al., 2022)
and is supported by both the BRAIN Initiative (Kaiser, 2022)
and the Amazon Web Services (AWS) Public dataset programs.
While it is more restrictive compared to other repositories
(e.g, DANDI allows only standardized formats (https:/www.
dandiarchive.org/handbook/about/policies/), while Zenodo allows
all formats (https:/about.zenodo.org/policies/), the resulting rigor
and consistency from DANDI may better facilitate reproducibility,
modeling, meta-analysis, and tool development (Magland et al.,
2024; https:/github.com/catalystneuro/dandi_Illms). We discuss
our experience contributing a demonstrative calcium imaging
dataset (Daste, 2022) on DANDI in “Considerations for sharing
on DANDL”

Apart from file format restrictions, researchers may need to
take into account file size limits. DANDI has fairly generous lim-
its, with 5TB per file and no limit on dataset size, while some
repositories have limits of less than 100 GB per file or dataset
(some offer higher limits for a fee or other arrangement).

We discuss in more detail our experience contributing a
demonstrative calcium imaging dataset (Daste, 2022) on DANDI
in “Considerations for sharing on DANDI.” Generally, NWB
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and DANDI have allowed our research to be more transparent.
This dataset is also used in a recent publication (Srinivasan et al,
2023) and is available on DANDI and can be shared easily.

NWB community

During the process of developing our NWB data conversion
pipeline, we had several opportunities to interact with the NWB
development team. Some of these ways were the NWB/DANDI
Slack for quick questions, GitHub issues for a technical question
or bug, GitHub discussions for entry level questions, remote meet-
ings with the NWB team for more in-depth substantial guidance,
and organized events (hackathons, user days, and data re-hack) to
meet others from the community and learn about the progress of
the ecosystem. In general, our interactions with the NWB commu-
nity were friendly, helpful, and responsive. For example, our ques-
tions on Slack usually received responses within the day. From our
observation, this was also true for questions posed by other users.

As described in “Creating NWB extensions allows fitting
domain-specific use cases,” we decided to design our own NWB
extensions, which was technically challenging. Communication
and assistance from the NWB team was very valuable in our design
and implementation. Occasionally there were also helpful exam-
ples in GitHub issues or discussions on GitHub and Slack.

That said, many of these resources and communication chan-
nels are more familiar to computational scientists and software
developers. The official documentation sometimes could be over-
whelming to navigate (see, e.g., https://github.com/Neurodata
WithoutBorders/pynwb/issues/1482), increasing a typical user’s
need to find and access these discussions scattered around
many channels. It could have been helpful to have a centralized,
searchable resource that aggregated and archived these different
issues and discussions across different forums, as a complement
to the official documentation.

Neuroscience community

The advent of the open science movement, in parallel with stan-
dards development, has increased access to software tools and
data that until recently was generally limited to high resource
institutions. For example, the Allen Institute for Brain Science
released a software development kit (SDK, RRID:SCR_018183)
that simplifies retrieval of and interaction with extensive collec-
tions of NWB standardized data recorded with cutting edge elec-
trophysiology and imaging tools. Such initiatives greatly expand
opportunities to reuse data in education (Van Viegen et al., 2021;
https:/training.incf.org/collection/neurodata-without-borders-
nwb), basic research (Deitch et al.,, 2021), and benchmarking of
new computational models (Schneider et al., 2023).

However, given differences in cultures, priorities, resources,
and incentives across different labs and institutions, adoption of
NWB, and of open science practices more generally, remains chal-
lenging. Institutional policies like the recently updated NIH Data
Management Policy (Martone and Nakamura, 2022; Contaxis
et al.,, 2024; https:/oir.nih.gov/sourcebook/intramural-program-
oversight/intramural-data-sharing/2023-nih-data-management-
sharing-policy) add new expectations for researchers, but without
creating meaningful recognition and training to support and
encourage changes in their practice. Individual institutions also
have historically provided minimal support for adoption of data
management best practices. We advocate for better funding for
standardization as an essential practice in science in general, and
particularly for NWB adoption. Some of this support could include
partnerships with public resources such as nwb4edu (https://
nwb4edu.github.io).
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Building Our NWB-Based Data Conversion Pipeline:
Experiences, Challenges, and Lessons Learned

How to organize data into a standard format

There have been many efforts at standardization of neuroscience
data. NWB started as a pilot project to standardize neurophysi-
ology data (Teeters et al., 2015), which then matured into
NWB:N version 2.0 (NWB:N 2.0; Riibel et al., 2019).

However, NWB is not really a file format. The substantive
outcome of the NWB development effort was an “ontology”
that encapsulates the logical structure of neuroscience data at a
high level, and schemas to translate these conceptual objects
into precise computational objects. Unlike saving an image in
joint photographic experts group (JPEG) format or a document
in portable document format (PDF), to use NWB researchers
must make a number of choices specific to their data, with
both technical and conceptual implications. This makes data
sharing a technique to be mastered by researchers, similar to
scientific writing and scientific communication. These are an
investment in time, require practice and engagement, but will
pay off in the end for the scientific endeavor.

Figure 2 illustrates questions faced by researchers who may
record multi-modal data scattered across different files and for-
mats. The resulting data need to be organized, unified, and
aligned in order to support analysis and collaboration. There
can be different strategies to standardize these data, for example
from a data lineage standpoint (the choice of the NWB team;
Fig. 2, middle) or from a categorical standpoint (Fig. 2, right).

Our files mostly follow the default NWB internal structure for
optical physiology, though we made our own extension to handle
odor data (see “Odor stimulus metadata”) and argue researchers
could benefit from alternative structures, perhaps using aliases or
tags, that allow them to interact with their data files following cat-
egorical or other organization (see “Suggestion for better data
access: tags and aliases”).

When to create and use the standardized format

Few experimental acquisition systems produce NWB files
natively, so use of the standard requires researchers to choose
a process and time to convert to NWB from some mixture of
other data files. One strategy is to convert at the end of a project,
perhaps to upload to a repository for sharing. This choice
minimizes disruption to existing research workflows and pre-
serves flexibility for intermediate analyses. However, this strategy
may reduce reproducibility, as analysis is done on different
files than are eventually shared. Also, shared code needs to be
refactored at time of publication to account for these file
differences.

Alternatively, conversion could occur prior to internal use. In
the pipeline illustrated in Figure 3, conversion happens between
preprocessing (using Suite2p and DeepLabCut) and analysis.
Regardless of standardization, researchers typically reformat
data before analysis, for example to compile information from
multiple raw files into a convenient single data array or table.
The key cost of standardization is to place restrictions on allow-
able output formats, in order to reap the benefit of harmonizing a
particular dataset with common practice in the field. If data are
converted early, then archival repositories can be used also as
backups, possibly including data version control. Moreover,
shared code does not need substantial rewriting at time of publi-
cation. However, if there is not already a robust conversion pipe-
line in place, this strategy introduces additional effort prior to
progress of the scientific aims.
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Our data pipeline. There are five primary stages in our data pipeline. Raw data acquired during experiments are archived in cold storage, and also fed to a preprocessing stage to be

transformed into more directly usable information (e.g., fluorescence time series after cell segmentation). This stage uses a range of processing packages that produce multiple files, which are
then combined during NWB conversion into a standardized format. Scientific analysis ideally is performed on the standardized data, but in practice may instead use individual files produced
during preprocessing, in which case conversion and analysis stages are swapped. Standardized data are published, e.g., by uploading to a publicly accessible archive, in parallel with traditional

journal publication.

Overall, our feeling is that the stages where NWB is most use-
ful are integrating relatively stable preprocessed data, and archiv-
ing finalized data and analysis for publication.

Our experience with metadata capture

Metadata can be defined as “data about data”, for example, infor-
mation about animal subjects (e.g., weight, sex, genetic line, age,
and whether naive or trained), recording sessions (e.g., date, task
type, experimenter name, manufacturer, and model of hardware),
stimuli (e.g., chemical names, concentrations, and frequency of
audio tones), supplemental text descriptions, and/or parameters
used in data processing. Generally, metadata can aid in quality con-
trol, communicate contextual information to future users, and sup-
port cross-analyses of multiple data sets. Its use can extend beyond
the lifetime of a project, including archiving, sharing, and reuse.

Quality of metadata capture
A benefit of moving data to NWB is that it encourages systematic
handling of metadata. To convert into NWB format, some types

of metadata are required by the standard, while some are encour-
aged. Before moving to NWB, our metadata were scattered in
several places. Now, all the relevant metadata are included in
the NWB file, allowing consistent and easy access. This may
help answer questions such as What was the sex of animal X2,
What imaging frame rate was used in experiment Y?, or, when
using our neurodata extension described in “Odor stimulus
metadata,” Which odor stimulus was used in trial Z?, without
having to go back to the raw data or to the experiment notebook.

Challenges to metadata capture

An obvious challenge to incorporating correct metadata in stan-
dardized files is that experimentalists do not always record meta-
data effectively. They may rapidly iterate an experimental design
while piloting and record only “core” data for preliminary analyses,
with a fuzzy boundary between these initial pilots and subsequent
“real” data collection. Moreover, metadata often take unusual
effort to document. Acquisition software may not support meta-
data capture at all. For example, mouse dates of birth or ages are
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often not included in data files produced during an experiment, yet
at least one of these values is needed to create NWB files that meet
minimal upload requirements on DANDI (see “Considerations for
sharing on DANDI”). Sometimes tools set incorrect metadata as a
default; for example, we found the NWB conversion function
within Suite2p defaulted to setting area of recording to be “V1”
(https://github.com/MouseLand/suite2p/blob/118901ac15c688150
2c65e011a46fbcal6e7a52d/suite2p/io/nwb.py#L346C27-1346C27).
Also, there is not always a clear purpose to recording metadata that
go beyond the key variables in the original study design. Under the
time pressure of the experiment, researchers may be induced either
to use non-informative defaults or to enter random metadata to get
underway.

This issue is exacerbated by a lack of accepted community
standards of how to document for some types of metadata. For
instance, in olfaction research, there is not yet consensus on
how to document odor stimuli (though see Castro et al., 2022
and “Odor stimulus metadata”).

More generally, metadata capture is needed not only during
acquisition but also during preprocessing, analysis, and file con-
version stages. Here again a lack of community consensus both
motivates the need for detailed metadata capture and illustrates
challenges in its implementation. For example, fluorescence is
typically normalized, but there is wide variation in how that nor-
malization is performed. Methods used to obtain so-called dF/F,
can differ in parameter choices or the algorithm itself (e.g., global
z-scoring, quantile normalization, or running normalization with
additional filtering). Some methods may attempt to compute
dF/noise instead (e.g., Inscopix CNMFE; Boivin et al., 2021).
Often these choices are not apparent in publications and require
careful inspection of code, if provided. Such nuances may affect
how the data are used, the assumptions of tools that analyze
such data, and efforts to replicate analyses.

Working with acquisition devices and software

In our labs, RSEs assist data conversion in part by working with
researchers, equipment vendors, and others to determine what
metadata are needed and how best to capture it.

Some commercial vendors put metadata in dedicated files,
e.g., Bruker Microscope extensible markup language (XML) or
ENV files (RRID:SCR_023608) while others integrate metadata
into the same files as core data, e.g., Inscopix Miniscope (RRID:
SCR_017407). However, some proprietary vendor files are poorly
documented (and questions stayed unresolved after contacting
support), such that we had to reverse-engineer files and make edu-
cated guesses as to the information in them. For example, some
things we had to independently infer from Bruker XML files
were where frame rates are recorded, what physical units different
fields have, and what the reference frame coordinates are. Our
inferences relied on field names, and were incomplete and possibly
in error. More importantly, certain metadata can change the algo-
rithm used to parse a file; for example, a flag indicating whether an
experiment has multi-plane imaging affects the correct way to
extract timestamps from the XML file. NeuroConv (Baker et al,
2023), the conversion tool from NWB developers (see “Off the
shelf NWB conversion”), initially did not integrate Bruker meta-
data (see https:/github.com/catalystneuro/neuroconv/pull/390),
but we note support has been added during revision of this article.

Open source tools typically fill a space between commercial ven-
dors and in-lab custom development. Some of these tools lack an
ability to input metadata. An example is ArControl (RRID:
SCR_021605; Chen and Li, 2017), which is an experiment control
platform used with general purpose microcontrollers to present
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stimuli and record behaviors. There is a project to convert its output
into NWB format (https://github.com/chenxinfeng4/ArControl-
convert2-nwb), but (as of this writing) still requiring post hoc meta-
data injection (see https:/github.com/chenxinfeng4/ArControl/
issues/2#issuecomment-1416018374).

We also develop custom scripts ourselves that generate
comma-separated values (CSV)-like files on microcontrollers.
This approach would ideally include informative headers, for
example to give each data column an informative name, a plain
text description, physical units, a data type, and possibly other
metadata. We find that this step introduces friction and an
increased chance of errors, especially as experimental designs
change and researchers or software engineers need to keep
code updated and documented. For now, metadata are often doc-
umented after acquisition. In an alternative approach, we imple-
mented custom widgets in Jupyter notebooks used for data
acquisition that allow experimenters to write in odor names. The
notebook then saves the names in a YAML file along with separate
core data files, and all files are integrated into an NWB file in a later
conversion process. The widget was tedious to develop, but sub-
stantially improved the quality of metadata capture for odors at
the time of the experiment.

Where should raw data and supplemental information be
stored?

Researchers may want to store raw data in their NWB dataset.
In our case, the raw data may contain calcium imaging TIFF
stacks or behavior video recordings, both of which tend to be large.
For example, a typical calcium imaging session in our lab generates
a video of size around 40 GB, with associated behavioral videos
around 3 GB. There has long been a question of what to do with
videos (https://github.com/NeurodataWithoutBorders/pynwb/
issues/1647, https://github.com/NeurodataWithoutBorders/nwb-
overview/issues/78), contrasted with the much smaller data
derived from them in preprocessing. Should raw videos be included
in NWB files? If yes, how? If not, how should videos be handled
when publishing to a repository?

The NWB team discourages writing videos in lossy com-
pressed formats within NWB files (see the question Why is it dis-
couraged to write videos from lossy formats (mpg, mp4) to internal
NWB datasets? in the Frequently Asked Questions: https:/nwb-
overview.readthedocs.io/en/latest/faq.html). The main reason is
an inability to decode the video without first copying the data
to a standard file type (e.g., MP4) on the user’s computer; more-
over, if the appropriate codec is not available, even a copied video
would be unreadable. The preferred solution is to include videos
in NWB files as an ImageSeries that has an external file ref-
erence (a relative path to, say, an MP4 file), Rodgers (2022) as an
example. This solution also allows adding videos in published
datasets on DANDI (see https:/www.dandiarchive.org/2022/
03/03/external-links-organize.html).

Often researchers may want to share explanatory content
such as videos of experimental setups or down-sampled videos
of calcium imaging registration aligned to behavior recording.
Only a subset of recording sessions may have such associated
content. A solution could be similar to storing raw data as exter-
nal file references as described above, clearly labeled for demon-
strative purposes to avoid confusion.

How should different data types be stored?

In NWB, neurodata types refer to different modalities of data
and metadata, for example DfOverF, PupilTracking, or
SpikeEventSeries. Each type has specific rules to fit
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different use cases. If data belong to a standard neurodata type,
there are usually clear examples and guidelines about where
and how to store it in an NWB file. When it does not, non-trivial
choices may be required, and variation across labs, each imple-
menting their own conventions, may impact general reusability.

For each data source to be integrated into an NWHB file, users
must answer a number of questions about the data representa-
tion. Can the data be fit in a standard neurodata type? What
metadata should be associated with it? Would an extension
(see “Creating NWB extensions allows fitting domain-specific
use cases”) add a more appropriate datatype? Does such exten-
sion exist? If not, is it worth the effort to develop one?

Additional questions concern where to place the data in the
NWB hierarchy. The organization of the NWB standard is struc-
tured with data workflow stages at the top of the hierarchy:
acquisition (usually raw), processing, and analysis
(Fig. 2). While in theory preserving some element of data lineage,
the semantics in practice are not always clear or observed, and
can cause confusion when creating and using NWB files.

For example, should raw behavior time series acquired
from microcontrollers be in acquisition, a module called
behavior in acquisition, or in the same behavior
module in processing that is often used to store post-
experiment processing such as DeepLabCut pose estimation?
From a data lineage point of view, it should be stored in
acquisition. But from an analysis point of view, doing so
spreads multiple fragments of behavior-related data across mul-
tiple hierarchical levels and modules.

As a detailed example of how small experimental variations
can lead to non-trivial design choices in NWB files, we describe
an experiment in the Fleischmann lab involving two color imag-
ing of red (tdTomato) labeled cells in parallel with green
(GCaMP) functional imaging. After using Suite2p for cell seg-
mentation, the researcher classified each cell as expressing or
not expressing the red fluorophore, producing a table of regions
of interest (ROI) (cell) indices, Boolean values for whether a cell
is red, and auxiliary data about the classification (average pixel
intensity and a quality metric).

There are three levels of detail one might choose to keep in an
NWB file (in addition to the functional imaging contained in a
standard datatype): as the full table, as only the Boolean array,
or as an array of indices of red cells. The last choice is the most
compact, but does not preserve the auxillary information that
might be useful for quality control and reproducibility. Similarly,
parameters of the classifier itself (e.g., intensity thresholds) should
likely be saved as well. The choice of what information to retain
both suggests and is constrained by what datatypes are available,
or whether we would need to develop an extension (see
“Creating NWB extensions allows fitting domain-specific use
cases”). And a further decision is where to save the data in the
file hierarchy (Fig. 2): as preprocessed data or an analysis result?

There is obvious value to saving the classification in the same
place that stored the segmentation table from Suite2p output,
essentially by adding more columns to that table. However, since
the classification is not available at the time of Suite2p segmenta-
tion, and updating existing objects in the Suite2p NWB file was
problematic (see “Editing and merging of NWB files”), we
resorted to placing the classification table in another module
called cell tag. Given that the table came from Suite2p,
whose outputs are in processing, we were unsure whether
cell tag should be considered processing or
analysis in terms of lineage. However, in terms of usage,
the tagging is not a useful result by itself, but is combined with
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the calcium dependent activity. Hence, we decided to consider
the table as processed data needed for analysis, and save it in
processing.

As a second example of non-trivial design choices, the Datta
lab records breathing signals with a temperature sensor
implanted in the nose. An Arduino captures the signal, which
is written into a CSV file in real-time. We developed a processing
pipeline to clean and parse the breathing signal into individual
breaths, and store the resulting data in an NWB file. There
were a number of challenges along the way that highlight some
limitations of the current NWB implementation.

Scipy’s signal.find peaks function was the core of the
breath processing pipeline; good results relied on choosing cor-
rect parameters to find true breaths while ignoring noise in the
data. Sometimes we would update the defaults of those parame-
ters based on new analyses, and it would have been helpful to
traverse old files programmatically and update them. As it was,
many key parameters ended up stored in the description
property of the relevant TimeSeries, which may not be an
obvious location to those looking at the data for the first time.

Also, there were a number of options for how to store infor-
mation about each breath, which were difficult to differentiate
ahead of time. It would have been ideal to choose based on,
e.g., efficiency of storage or common practice, but in the end
our decision was purely pragmatic. We first considered a tabular
format like the TimeIntervals table, but adding data to the
TimeIntervals table proved to be cumbersome (see https:/
github.com/NeurodataWithoutBorders/helpdesk/discussions/30).
Then we considered an IntervalSeries, which would
allow labeling onsets and offsets of inhales and exhales and con-
vey the “interval” aspect of the data, but this did not lend itself to
storing scalar descriptors for each breath, since the datatype
stores only timestamps and not values. Finally, we settled on a
simple solution: a BehavioralTimeSeries, containing
many TimeSeries of length number of breaths. For
example, inhale onset times, amplitudes, and peak flow rates
each got their own TimeSeries. Inhales and exhales were
paired in the preprocessing stage, and the TimeSeries that
describe the inhales and exhales have the same length, thus
implicitly pairing each inhale/exhale pair. We chose to save the
BehavioralTimeSeries interface, called “breaths”, in the
processing section of the NWB file.

Should one standardize data from intermediate analysis
stages?

Research analysis pipelines typically have multiple stages, such as
preprocessing, statistical modeling, simulation, or any computa-
tion whose inputs are the outputs of a previous stage. Those
stages may also branch out to test a family of models, or vary
analysis parameters. The NWB standard is limited in its handling
of analysis parameters, for example as tables of metadata. Should
intermediate results be appended to a single NWB file containing
the entire history of analysis, each as their own “data source™?
Should each analysis be stored in its own NWB file? Should all
but the final published analysis be discarded?

Iterative analyses quickly become unwieldy without automated
tracking of workflows (e.g., Renku; https:/renku.readthedocs.io/)
and/or data versions (e.g., DataLad; RRID:SCR_003931; Halchenko
et al, 2021). NWB was not designed to compactly represent
collections of results such as arise from parameter sweeping in an
analysis. Similarly, NWB does not natively support tracking the par-
titioning of data, such as into “training” and “testing” subsets for
cross validation (though there are possible ad hoc solutions under
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the current standard, and new packages in late development—per-
sonal communication, NWB Developer Team—to support such
functionality).

Editing and merging of NWB files
Early in our transition to NWB adoption, we needed to combine
an NWB file exported from Suite2p with another NWB file pro-
duced by our own data pipeline. This turned out to be surpris-
ingly difficult. Indeed, according to the PyNWB (RRID:
SCR_017452) documentation, adding to files is supported, but
removal and modifying of existing data is not allowed. We there-
fore tried two approaches to do this. In the first, we read the exist-
ing NWB file produced by Suite2p, added the missing data, and
exported to a new NWB file. In the second, we looped over con-
tainers, i.e., HDF5 groups, in the existing NWB file, and copied
each of them into a new NWB file, together with the new data.
The first approach produced an NWB file that, due to a bug in
the underlying packages (which has since been fixed), caused
crashes while reading with PyNWB (see https:/github.com/
NeurodataWithoutBorders/pynwb/issues/1301). Because of a
different bug, the second approach failed to create a new NWB
file with the new containers (see https:/github.com/Neurodata
WithoutBorders/pynwb/issues/1297). These unexpected errors
in what seemed like intuitive workflows were frustrating both
for the delay in switching over to NWB, and the additional
effort needed to diagnose the bugs and find workarounds.
There are still limitations in copying containers from one NWB
file to another. But compared to when we started working on this
project, it is now more straightforward to copy datasets, i.e., a data
array and its timestamps, from one file to another, and to read an
existing NWB file, modify it, and export the modified file to a new
file. It is also possible to append data to a file, in the sense of cre-
ating new datasets. However, to our knowledge, the only way to
update metadata in an NWB file is to read the content of the
existing file, use the NWB API to create an object with the correct
metadata, and then export to a new file. In general, we have found
that editing and merging NWB files can be a large source of
confusion for users, and having a good tutorial or documentation
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as proposed in https:/github.com/NeurodataWithoutBorders/
pynwb/issues/1773 would be extremely useful.

We want to acknowledge that the bugs we encountered are
not due to carelessness from the NWB developers, who have
been very responsive to our feedback, but possibly underlie non-
trivial technical issues that any HDF5-based open source soft-
ware would have to address.

Pain points in the conversion workflow

We encountered several pain points in our data conversion pipe-
line. One of the main pain points happens with branching exper-
imental designs (Fig. 4a). Each time a design is updated, NWB
conversion code may break and need to be updated. This is an
issue especially early in project development, when many exper-
imental details are undecided, but can continue far into a pro-
ject’s lifetime as researchers adjust their approach based on
prior results.

Another pain point may arise when metadata are missing at
conversion time (Fig. 4b). Researchers may be tempted to input
nonsense values that need to be updated later, or the conversion
may be blocked until the missing metadata are captured.

Sometimes, data in NWB files may need to be updated, e.g., to
correct a previous entry, or to add data that becomes available later,
such as histology (Fig. 4c). In this case, the pain point happens
when the data conversion pipeline has to be run again on multiple
already existing files. As discussed more in “Potential surprises
with data validation,” a related issue can arise when sharing data
in an archive such as DANDI (Halchenko et al, 2022).
Validation to DANDI is stricter than requirements to build a file
with the python API (PyNWB), requiring conversion code updates
even after conversion was locally “successful” (Fig. 4d).

Timeliness of code contribution acceptance

We discovered that Suite2p was dropping data from a second
microscope channel in its NWB file output. The issue was that
the NWB export function had been developed for only one
microscope channel. Figure 5 shows the timeline of the issue until
a fix was released. While fixing the issue internally took around
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Validation
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Pain point scenarios in the conversion workflow. This figure describes different scenarios adding burden to the research workflow. The red crosses represent a situation that breaks

the existing workflow. The electric current symbol represents the location of a pain point. a, Branching from the main experiment, i.e., a redesign or update of the experiment, may break the
current conversion code to NWB. b, If some metadata are missing at conversion time, it may force the researcher to come back to the experiment, to the original data, or to the conversion code.
¢, A scenario where existing NWB files need to be updated, e.g., when data from additional experiments like histology experiments become available, or when the NWB files have missing/wrong
metadata, or if the NWB file has been found to have some data issues which need to be updated. d, A validation issue before publishing the data to DANDI which may force the researcher to

update their conversion code to NWB and reprocess their NWB files.
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Figure 5.  Example of a broader community issue resolution timeline. This figure illustrates
the time taken to fix a Suite2p-related issue internally (i.e., two months), compared to the
time it took to fix the issue for the broader community (i.e., five months).

two months, it took around five months (including time for us to
complete a GitHub “pull request”) for the solution to be available
to the Suite2p community. This is a long turnaround for what we
considered to be a critical error, impacting all multicolor imaging
analysis. We stress that we appreciate the Suite2p team’s review
and acceptance of our code contribution. However, this experi-
ence illustrates a general problem for research software develop-
ment in the open source community; researchers maintaining
software may not have the bandwidth to address every issue or
feature request in as timely a fashion as desired.

Off the shelf NWB conversion

Some friction during adoption of NWB can arise from the level of
technical skill needed to be able to convert one’s data. When we
started the process of adopting NWB, the options available were
either to learn how to write our own data conversion pipeline, or
hire a consultant to do the technical work. In the few years since,
the NWB ecosystem has rapidly evolved. More recently intro-
duced tools miss some areas of need (e.g., currently unsupported
proprietary formats like Inscopix, or Suite2p output with multi-
ple channels), but they solve many popular use cases.

NeuroConv (Baker et al., 2023) is a rapidly advancing Python
package from core NWB developers to make it easier to convert
from a variety of common neuroscience data formats. It is a
flexible low-code solution for use in one-off conversion or as
part of alab pipeline. One benefit of NeuroConv is that it includes
utilities to get metadata from proprietary formats with minimal
effort. Additionally, it can combine files from multiple data
sources with functionality to align timestamps, and contains
utilities for file path inference to aid batch-conversion based on
user-defined data organization. Coupled with the development
of the NWB Graphical User Interface for Data Entry (NWB
GUIDE; RRID:SCR_025467; https://nwb-guide.readthedocs.io;
Flynn et al., 2024), which uses NeuroConv as a backend, NWB
is considerably more accessible to newcomers than it was at the
time we began our adoption.

These recent changes highlight a risk to early adopters of any
standard that one may build features from scratch that quickly
become obsolete after further developments from the commu-
nity. If we started this project today, we would leverage these
community projects, developing less custom code and using
existing features from more widely tested projects used by the
entire NWB community.

An indirect benefit of using NWB is improved data awareness
Asastandard, NWB encourages good data practice. For example,
each data array that is written in a file needs to have a timestamps
vector attached to it. And ideally all the timestamps of the same
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NWB file would be on a common axis, which can be quite chal-
lenging for experiments with multi-modal recording and has
been discussed recently in Rodgers (2022). This includes the
acquisition timezone, meaning an NWB file can easily be ana-
lyzed in different parts of the world without risking timestamps
collision.

In our case, standardization encouraged better timestamping
with custom instruments and sensors like Arduino and Teensy
boards. For example, before we developed our own data pipeline,
one lab researcher manually specified inter-trial intervals in their
analysis code, as it was cumbersome to extract the (nearly cons-
tant) intervals from the recording system. Now they have access
to the actual recorded timestamps for the inter-trial intervals and
can catch and correct any system errors. Also, using NWB
encouraged us to align timestamps across all data sources, simpli-
fying downstream analysis work.

A general byproduct of moving our lab to NWB is increased
awareness regarding data management itself. Lab members have
become more familiar with general principles such as FAIR
(Wilkinson et al., 2016) and emerging best practices. Although
still harboring some skepticism of the direct usefulness to their
research, lab members have become more welcoming to incorpo-
rating NWB into their workflows, and are supportive of the
broader benefits, such as for data sharing.

Creating NWB Extensions Allows Fitting

Domain-Specific Use Cases

An emerging standard with as broad a domain as NWB will nat-
urally struggle to cover some applications, especially in less com-
mon experimental settings. Making the standard extensible
creates a way for individual users or research groups to add func-
tionality beyond what is created by the core developers. The
NWRB standard thus includes “neurodata extensions” to incorpo-
rate new data types. Extensions may be used individually, shared
with the community, or, if the extension addresses a fundamental
gap in NWB coverage, submitted for review to be added to the
standard NWB data types. We have had some success using
and creating NWB extensions to fit our specific research needs,
though challenges and questions remain. motivation and defini-
tion of extensions

Existing neurodata extensions

Before deciding to create an extension, researchers should check
the Neurodata Extensions Catalog (NDX Catalog; RRID:
SCR_021340), a community led effort to create a central repository
of contributions that, by design, arise from widely distributed
effort. The NDX catalog includes extensions that support diverse
types of data such as transistor—transistor logic pulses (https:/
github.com/rly/ndx-events), and popular acquisition systems
such as miniscopes (https:/github.com/catalystneuro/ndx-
miniscope). However, not all Neurodata Extensions are listed on
the NDX Catalog, since anyone can create and post an extension
on lab websites, GitHub, or other sites.

Lab-specific metadata

One use case of NWB extensions is to record lab-specific meta-
data with greater flexibility than is supported in base NWB.
We created ndx-fleischmann-labmetadata (Pham,
2023a) to store additional detail on recorded brain areas, and
descriptions of the experiment and animals. Within our general
type of experiment, we use many variations (Box 1), such as
1-photon or 2-photon calcium imaging, single or multicolor
imaging, head-fixed or freely moving animals, and passively


https://nwb-guide.readthedocs.io
https://nwb-guide.readthedocs.io
https://github.com/rly/ndx-events
https://github.com/rly/ndx-events
https://github.com/rly/ndx-events
https://github.com/catalystneuro/ndx-miniscope
https://github.com/catalystneuro/ndx-miniscope
https://github.com/catalystneuro/ndx-miniscope

12 « J. Neurosci., September 18, 2024 « 44(38):¢0381242024

presented or task-driven stimulation. NWB standard is missing
fields to describe some of the complexity in these experiments;
for example, we use multicolor imaging to retrograde label pro-
jections from the imaging site to distant brain regions, and there
is no field to indicate this second (projection) area. Storing such
additional experimental description as text in the top-level
description field would be harder for quality control at time of
entry, and less efficient to parse for queries at analysis time.
With our extension, a subset of information ends up being
repeated with standard locations in the NWB file; for example,
imaging site is also stored under ophys, as suggested in the
NWB documentation. However, we chose to centralize our meta-
data in one place to make querying, analysis, and aggregation of
multiple data files easier.

Odor stimulus metadata

Another use case for extensions is to describe stimuli that do
not fit within base NWB types. Our calcium imaging experiments
use primarily odor stimuli, and some non-chemical stimuli
such as sound. We are not aware of an extension to adequately
describe these stimuli, and hence a year ago developed
ndx-odor-metadata (Pham, 2023b). We characterize odor
stimulus with standardized information automatically obtained
from PubChem (Kim et al, 2023) using a PubChem
Compound Identifier (chemical International Union of Pure
and Applied Chemistry names, molecular formulas, and
weights); dilution details such as concentration and solvent;
metadata that are useful for analysis such as stimulus category
(e.g., control or conditioned stimulus) and common chemical
names; and identifiers to cross-reference with associated time
series. The extension also allows non-odor stimuli to be described
in plain text.

A major challenge with such extension development, although
not an issue specific to NWB, is that there may not be community
consensus or documentation to be used as starting points for
extension design. For odor stimuli, it was not obvious what type
and level of description would be necessary for both in-lab analysis
and general reproducibility. Fleischmann lab RSEs used existing
spreadsheets as starting examples, and learned only later that out-
side collaborators had independently created a package, pyrfume
(Castro et al., 2022), for documentation of odorants. Future work
could better harmonize these two efforts at stimulus metadata cap-
ture. More generally, the technical development of metadata cap-
ture can grow only in concert with the research community’s
understanding of what the standards for metadata ought to be.

Documentation for extension development

For most of the labs, we expect that extension development will
be out of reach unless the lab has access to personnel with strong
coding experience. A general challenge for us was that the avail-
able documentation could be confusing, and information was
scattered across multiple sources, including documentation
pages for PyYNWB (https://pynwb.readthedocs.io/), hierarchical
data modeling framework (HDMF; Tritt et al., 2019; RRID:
SCR_021303; https:/hdmf.readthedocs.io/), NWB Overview
(https://nwb-overview.readthedocs.io/), and NWB Schema
(https://nwb-schema.readthedocs.io/), and also in GitHub issues
or examples on Slack. It would have been helpful in particular to
have a larger set of use cases, examples, and/or tutorials. We
stress that the NWB development team was highly responsive
through GitHub, Slack, and emails, and their help was very valuable
for our development work. In the future, we hope such support
could be complemented by more comprehensive documentation.
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Social challenges in extension development

One lesson learned from our experience is that creating
the extension is only a technical part of a solution. Sustained
engagement with researchers to choose, document, and
record key information is the more fundamental requirement,
especially if metadata standards motivating the extension are
unsettled.

As a lab, we continue to refine what metadata we should track
and how we should capture it. Some changes arise from variation
in experiments conducted by different lab members. Some
changes reflect interest in adding further types of information,
such as water restriction details for experiments with behavioral
training, as inspired by an International Brain Lab extension
(https:/github.com/catalystneuro/ndx-ibl). An extension may
lower the technical barrier to metadata capture, but only if the
extension is aligned with researchers’ goals and practices, includ-
ing changes over time.

A closely related challenge is that many metadata records
must be captured post hoc instead of automatically during acqui-
sition or preprocessing. Some acquisition systems lack features to
enter metadata in machine-readable formats (necessary for soft-
ware to correctly place that information in NWB files) during the
experiments. Even where real-time capture is possible, the sys-
tems may be cumbersome to use, leading researchers to avoid
comprehensive entry and checking of metadata. We usually
need to work with researchers to collect metadata records in
machine-readable formats after experiments and preprocessing
are completed, leading to increased work and greater risk of
errors and missing information.

We also have felt a tension between building minimal exten-
sions that serve immediate needs versus investing in a longer
development project that may have greater generalizability. For
example, our odor stimulus extension provides for single odorant
but not mixed odor stimuli. Though we generally do not use
multi-component odors, they are used by some of our close col-
laborators (Wilson et al., 2017). We also designed our extension
to build on PubChem standardization, which presents difficulties
when studying custom-made or undocumented natural odors (Li
et al., 2022). These limitations in our current implementation
may become impediments as neuroscience tends toward more
natural and ethologically relevant behaviors (Krakauer et al.,
2017). However, surmounting these challenges will require sub-
stantial engagement from a broad section of the olfaction
research community, before any technical contributions such
as extensions can have a substantial impact.

Framework extensions
An extension is built on top of another NWB object. This object
can be one of the four minimally structured objects (Groups,
Attributes, Links, and Datasets) of the base NWB specification
(https://schema-language.readthedocs.io), but it is often better for
an extension to build on a previously developed high-level data
type that already captures much of the structure of the information
being added. In addition to making it easier to develop the exten-
sion without starting from scratch, such inheritance can promote
greater consistency by keeping almost all data organization the
same as a “‘common” data type, except for the particular items
added by the new extension. For example, a new fluorescence
imaging data type might add beam path parameters to an existing
fluorescence imaging type to provide for a scope that uses non-
uniform laser scanning but otherwise collects standard data.

In cases where NWB is missing a more basic category of data,
there is motivation to develop extensions intended to be used
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specifically as building blocks for other extensions. We refer to
these types of building blocks as “framework extensions.” In
addition to facilitating development and serving as illustrative
examples, framework extensions could add technical precision
to discussions if a research community is working to converge
to a consensus data standard.

For example, DeepLabCut and Facemap output time series of
spatial locations of points on an animal’s body. While these out-
puts can be stored generically as simply behavior, they are both
instances of a more specific concept of “pose,” and can be stored
using the ndx-pose extension (https:/github.com/rly/ndx-
pose; the DLC developers offer the DLC2NWB—https://github.
com/DeepLabCut/DLC2NWB—utility to ease conversion using
this extension, but we are not aware of an analogous tool for
Facemap).

An example framework extension that could have broad util-
ity would store results from principal component analysis (PCA;
one of the authors, T.P., participated in discussing this idea at a
2023 NWB Hackathon, but it is not yet implemented as far as we
know). PCA is used widely as a simple data dimensionality
reduction technique. There are several variants of PCA, such as
joint PCA (jPCA) used to find low-dimensional structure in
the activity of large neural ensembles (Churchland et al., 2012).
Moreover, many analysis applications, including Facemap and
MoSeq (Wiltschko et al., 2015, 2020; Sherry et al., 2023), use
PCA as a preprocessing step. A general PCA extension could
serve as a useful framework to incorporate these different uses
within a consistent NWB format. The framework extension
would define component eigenvalues, eigenvectors, and projec-
tions of the original time series.

As another example, BEADL (RRID:SCR_025464; https:/
beadl.org/) and ArControl (Chen and Li, 2017) model behav-
iors in a finite state machine framework. The extension
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ndx-structured-behavior (https:/github.com/rly/ndx-
structured-behavior) is available for BEADL outputs, and it is
possible to adapt the extension to handle ArControl output
(see https://github.com/chenxinfeng4/ArControl-convert2-nwb).
However, as finite state machines are an important class of models
for analysis, there could be value in establishing a more general
framework extension, for example called ndx-finite-state,
from which extensions for these specific analysis packages would
inherit.

Wishlist for NWB extensions
Development, cataloging, and updating extensions could be
more streamlined.

First, researchers may develop software using different repos-
itory hosting (e.g., GitLab instead of GitHub). It could be more
inclusive for the ndx-template extension template (https:/
github.com/nwb-extensions/ndx-template) to not explicitly
assume GitHub as the code repository. The template might
also take into account both the Python Package Index (PyPI)
and Anaconda as potential package repositories.

Second, currently, to be added to the NDX Catalog, new
extensions are submitted via Pull Requests for review on
GitHub. Some seem to be approved instantly while others are
either stale (e.g., ndx-pose), or took around 2 months to be
approved (Fig. 6). While the timeline for open source develop-
ment is often highly variable, researchers and RSEs have to bal-
ance many priorities, and usually cannot dedicate much time
to the approval process.

To simplify the review process, a bot could check critical
requirements before asking for intervention from an NWB main-
tainer (taking some inspiration from the Conda-Forge commu-
nity). For example, the bot could check if the package is
already published on PyPI, if all the metadata fields in the
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Figure 6.  Pull requests (PRs) for publishing on the extension catalog may take a long time to be accepted. The data were obtained using GitHub API from nwb-extensions/

staged-extensions repository, on 2023-07-30. Out of 23 extension requests, about 61% (14/23) have been merged (bars ended with purple vertical sticks) and added to the
catalog, while 13% (3/23) are closed without being added to the catalog (bars ended with red crosses). The review times for finished PRs vary, ranging between within a day to less than five
months for most of them, with the exception being 1.6 years for the closed request for ndx-tan-lab-mesh-attributes. About 26% of the extension PRs (6/23) are still
open, with 3 out of 6 being stale for more than a year. A notable one is ndx—pose for pose estimation extension (PR #31) which has been open for almost a year (Sept. 2022). Note: any
closed/merged PR finished within less than 5 days is artificially extended to be 5 days for visibility.
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ndx-meta.yaml file are filled in, and if all tests pass. Also, the
bot could help for updating the extensions, say if the extension
template or if some dependency has changed. Also, publishing
to PyPI could be streamlined, for example by having a continu-
ous integration (CI) job in the ndx-template extension tem-
plate that supports automatic publishing to PyPL

Additionally, we suggest adding some metadata to improve
quality checks, centralization, and organization of extensions.
To maintain quality control, the catalog could allow entries to
be tagged to indicate whether an extension has been reviewed,
similar to the distinction of preprint from peer-reviewed publica-
tions. To tackle fragmentation of extensions and tools, it might be
helpful to also allow optional specification of the type and lineage
of each entry, e.g., whether it is built upon another extension, and
if it is a template extension for demonstration purposes.
Additionally, we found it unclear whether the catalog submission
policy welcomed lab-specific extensions (e.g., ndx-ibl for the
IBL and ours ndx-fleischmann-1lab), though in comments
on an earlier draft, the NWB team clarified that they do encour-
age such submissions (personal communication). Although lab
specific, these extensions could be useful examples or starting
points for other labs to develop their own.

We hope to see depositing on the community catalog become
more flexible and timely. A disadvantage is a potential reduction
of quality control. However, more engagement, contribution,
feedback, and discussion from the community are in general
more likely to accelerate development of the standard.
Extensions may serve as a starting point for such discussions,
responding to community needs.

Considerations for Sharing on DANDI

In this section, we look at the last step of the data conversion
workflow: data have already been converted to NWB and the
researcher wants to share the data on a public repository, for
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example to accompany a published paper. Here we look at
DANDI (Halchenko et al., 2022), as the default solution recom-
mended by the NWB team.

Potential surprises with data validation

One possible source of friction is validating the data before being
able to push to DANDI. DANDI enforces a set of rules that NWB
files have to meet before upload and publication as a “dandiset” is
allowed, intended to promote adherence to consistent metadata
standards and ensure the FAIRness (Wilkinson et al., 2016) of
the archive. If files do not meet those requirements, researchers
may need to (iteratively) redo their conversion with altered set-
tings. This can be an unpleasant surprise, as one might have
thought that having converted to NWB itself would be sufficient.

One solution could be to promote and describe the
NWBInspector tool (RRID:SCR_025465; https:/nwbinspector.
readthedocs.io), used to validate NWB files, in the documentation
and tutorials on how to create NWB files. It would also be helpful
to be able to run NWBInspector from PyNWB to check files and
get feedback at the time of initial conversion. This solution may
soon be implemented when using no-code tools like NWB
GUIDE (Flynn et al., 2024; https:/nwb-guide.readthedocs.io; see
also “Off the shelf NWB conversion”), though it did not exist
when we started our projects.

Another point of friction can arise if a dandiset has already
been published but needs to be updated later, for example (see
https://github.com/dandi/helpdesk/issues/98). In our case, the val-
idation rules changed after we first released the dandiset, and files
that were already published became retroactively non-compliant.
We had to go back to conversion from raw data. In general, if the
cost to update a dandiset is too high, the risk is that researchers
may decide not to correct stale or inaccurate information.

A potential solution would be to allow version-controlled
inspection (Fig. 7). There could be at least two levels of
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Figure 7.

Proposed version-controlled checks for NWBInspector when uploading to DANDI Archive. To be published on DANDI Archive, datasets should always be checked and pass the latest

version of NWB Inspector (first and second boxes) to maintain compliance with best practices. When existing datasets need to be updated, they may fail the latest version, for example 3 years
after publication, to correct metadata (third box on left). The proposed solution is to allow for checking against the last working version for existing datasets, in cases of non-compliance with the
latest version. This solution still allows researchers to disseminate updates and corrections, while maintaining transparency for the community in terms of non-compliance. This solution can be
allowed a limited number of times, and failures can also be reported to DANDI Archive maintainers.
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NWBInspector passing. Files that pass the most recent
NWBInspector can always be uploaded. But if some files already
on DANDI get updated and fail the most recent inspection, they
could still be uploadable given they passed the previous working
version of NWBInspector. Similar to CI systems, logs of fail/pass
versions could be attached to the archive for developers and oth-
ers to inspect. This approach would allow for researchers to
flexibly upload corrections and updates, while still being trans-
parent about compliance status. Failures could be reported to
the DANDI team, allowing them to work with researchers to
follow up-to-date best practices.

Modification of file organization

Another potential surprise is that the DANDI upload tool
renames and reorganizes files into a “flatter” hierarchy. For
example, one could have their NWB files organized by experi-
ments with a nested directory structure organized by areas of
recording, but DANDI refactors this structure to be organized
only by subject directories, and moreover renames files by subject
name and data type. DANDI also modifies external file links
stored inside each NWB file to stay consistent with these file
changes.

Changing the file structure may break existing analysis pipe-
lines based on the original paths. Thus, it may be useful to think
about data archiving from the start of a project. In that case, pub-
lishing the data to DANDI from the beginning of the project,
with occasional updates, would make the researcher aware of
this reorganization and account for it in their own code. In addi-
tion to saving effort at publication time, such a workflow would
enhance analysis reproducibility. However, the cost is some
increased overhead while data collection is still occurring.

Alternatives to DANDI and general strategy with data
repositories
DANDI has strong restrictions on data file formats. While there
is currently an exception on DANDI (Rodgers, 2022) that con-
tains free-form source data (e.g., Python and NPY files), it is
unclear whether this feature will officially be supported in the
long run. Alternative repositories include Zenodo (https:/
zenodo.org), Figshare (https:/figshare.com/), GIN G-Node
(https:/gin.g-node.org/), OSF (Foster and Deardorff, 2017), or
university data storage, potentially with Globus endpoints
(RRID:SCR_011887; Foster and Kesselman, 1997, 1998; Foster,
2006). An alternative decentralized solution is Academic
Torrents (Cohen and Lo, 2014; Lo and Cohen, 2016), which
uses the BitTorrent protocol and leverages university bandwidth
to avoid unsustainable data storage costs over the long term. These
data archives can include NWB data and all related data such as
raw data, pre-conversion data, analysis and summary data.
However, it may not always be feasible to centralize all data,
and researchers might instead use a multi-site storage strategy.
Large source data, including raw and pre-conversion data, could
be deposited on university storage solutions, with Globus end-
points if possible, to take advantage of universities’ generally
less restrictive quotas, assuming these data would rarely be
accessed, updated, or used after conversion. Converted NWB
files could then be deposited on DANDI, on which researchers
can benefit from specialized software tools, as well as DANDI
Hub, a Jupyter Hub with free computing resources on AWS.
Lastly, along with code and documentation, researchers could
continuously work on data with their analysis pipelines using
solutions such as GIN G-Node, GitHub/GitLab with a DataLad
(Halchenko et al, 2021), or data version control (DVC)
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(Barrak et al., 2021; Kuprieiev et al., 2024) backend to manage
aggregated and analyzed data and code. This helps with version-
controlled code and data, without the restrictions from DANDI
Archive.

We note that if researchers decide to follow a multi-site strat-
egy, they would need to manually link these different archives
together, preferably with DOI numbers and in machine-readable
metadata on these different providers. The outlined example
strategy separates the three archives (e.g., university storage,
DANDI Archive, and GIN G-Node) by an assumed increasing
update frequency, i.e., raw data files are less frequently updated
compared to NWB files, and NWB files less than files with anal-
ysis or modeling results. With distributed storage, especially if
these assumptions do not apply, researchers would need to man-
ually keep track and link the updates regularly.

Suggestions to Streamline Data Reading and Writing
Data exploration tool guidance

The NWB ecosystem has many applications available for a
researcher to quickly get a sense of what is inside an NWB file.
As of writing, there are 4 general and 15 specialized data tools listed
on the NWB Overview (https:/nwb-overview.readthedocs.io/),
and new tools continue to emerge. The number of active projects
indicates a vibrant development community. However, new users
may be overwhelmed by the choices, and not know how, except
through brute force trials, to determine which tools are best for
them. Moreover, consolidation around a few key applications
could help channel valuable developer efforts into refining and
improving existing tools, some of which still exhibit rough spots
like freezing on large files or frequent crashes.

This situation is common in open source development eco-
systems (for example, there are many partially redundant but
not interchangeable python plotting packages). A difference
here is that the NWB standard was created and continues to be
maintained through a somewhat centralized development
team, with an explicit agenda to be adopted as a ubiquitous stan-
dard for neurophysiology. There is thus a stronger case that inno-
vation arising from widely dispersed development should be
balanced by centralized advising over third party tools.

For example, primary NWB documentation could maintain a
section with some (automatically scraped) metrics for each tool
(e.g., number of GitHub stars and number of downloads on
PyPI) next to accessible summaries of the features of each tool,
and descriptions of who their target users are. At time of writing,
several of these changes are in process or planned (NWB Team,
personal communication; https://nwb-overview.readthedocs.io/
en/latest/tools/analysis_tools_home.html).

A more assertive approach would select recommended tools,
on the basis of features, robustness (e.g., resolution of bugs and
handling of large file sizes), and probable longevity. For data
exploration, some natural candidates could be NWBWidgets
(RRID:SCR_021154; https://nwb-widgets.readthedocs.io), which
is also integrated with DANDI Hub, and relatively newer
NeuroSift (RRID:SCR_025466; Magland et al., 2024), which is
an interactive visualization tool that works directly in the user’s
browser. In our experience, NeuroSift is highly accessible, with-
out requiring installation, and offers strong visualization func-
tionality out of the box. Both tools support streaming data
from the DANDI Archive. Again, the goal would be to provide
soft incentives that encourage contributors to focus primarily
on existing tool refinement, while still leaving space for new spe-
cialized projects in early development.
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Data access pain points

Figuring out where data are

We find that new NWB users often struggle to find and access
information, with confusion arising from where the information
is in the internal hierarchy, or because the datatype of a particular
object does not intuitively describe what it is. Many scientists
look first for modules based on source of data (e.g., fluorescence,
behavior, and stimuli). But access under the NWB schema runs
first through stage of processing (e.g., acquisition, preprocessing,
and analysis) and then descends through multiple levels of hier-
archy to data source. That is, researchers may employ a mental
sequence of where is my behavior (say) then what processing
has been applied, which is the opposite ordering from what
NWB currently uses (Fig. 2).

An outlier is that stimulus is at the top of the hierarchy,
with acquisition and processing. However, stimulus
time series sometimes need additional processing, for example,
to transform raw digital outputs recorded by behavior control
devices into a semantically useful tabular format. Should such sti-
muli be saved within stimulus (with processing stage indi-
cated in name or description attributes) or in a module
inside processing? Additionally, tables cannot be saved
inside stimulus, and only limited metadata can be associated.
It is recommended to use dedicated modules or objects designed
to save metadata, for example devices for recording or
lab metadata for lab-specific metadata. This again runs
into the potential issue of categorically similar objects being
widely separated.

Cumbersome syntax to extract data

A challenge for new users that is parallel to understanding object
locations is confusion over the addressing syntax, i.e., when to
use dot syntax, objectl.object2, or Python dictionary syn-
tax, objectl[ "object2"]. The syntactic variation derives
from the structure of the HDF5 file specification and the NWB
schema, both of which are generally unknown and opaque to users.

Two obvious alternative possibilities for API syntax would
simply make one or the other access method universal (e.g.,
through a Python DataClass). Either choice would obscure the
real differences between types of objects in the NWB implemen-
tation (e.g., a fluorescence object including metadata attributes,
vs a numpy array just of the dF/F, values), but we are not con-
vinced that most users benefit from having these differences
encoded in syntax.

Another possibility that is both general and convenient for
programmatic access would support universal reference via
“path strings”, such as nwbfile[ pathstr] where pathstr=
’objectl/object2/object3’.

Listing 1. Retrieving data using the PyNWB API

Pierré etal. ® A Perspective on Standardization with NWB

Lab-specific wrapper workaround

In its current state, long hierarchies in NWB files (e.g., processing
— behavior — interpolated — position — data) are slow to type
and hard to remember, and tend to clutter code. A common
method to hide complexity in an individual user’s analysis code
is to first create “wrappers” (Fig. 8). For example, a wrapper may
define simple “get ()” methods that automatically skip parts of
the object path, e.g, data=nwb wrapper.get ("dFF0”).
Wrappers can also add convenience features, such as aggregating
different time series into a single data frame, and wrappers can
be stored in dictionaries for easy looping over multiple files.

On the other hand, wrappers may be complex to design and
may introduce a maintenance burden if they aim to work across
the usually wide range of experiments and data streams that arise
even within a single lab. In practice, then, individual researchers
often end up partially or completely rewriting similar helper code
with each new project.

Suggestion for better data access: tags and aliases

A potential solution for better data access is a feature we call “fluid
NWB?” (Fig. 9), allowing for a list of tags for each object, including
“flat” objects such as timeseries, tables, and modules. Users could
add annotations and categories as they see fit, and specialized com-
munities could evolve their own norms for “virtual” file organiza-
tion, without confounding the underlying standard. Aliases, to our
knowledge, are currently not possible, but the integration of such a
feature may allow for users to have easier and quicker access, and
could also aid documentation. For example, the AllenSDK has a
dedicated dictionary for metadata field mapping to NWB/HDF5
locations; this shares some similarity with aliasing and illustrates
a place for annotation usage (https:/alleninstitute.github.io/
AllenSDK/allensdk.core.brain_observatory_nwb_data_set.html#
allensdk.core.brain_observatory_nwb_data_set.BrainObservatory
NwbDataSet. FILE._ METADATA_MAPPING). Supporting cus-
tom tags for neurodata types is currently an open GitHub issue
(see https:/github.com/NeurodataWithoutBorders/nwb-schema/
issues/531).

Tags and aliases would be a “decorative layer” on top of the
NWB standard, allowing for more “fluid” data structures, which
researchers and developers could exploit for usability and disco-
verability. However, in the absence of convergence on naming
norms within a given research area, overlapping tags, complex
tag formatting, and tag relations could proliferate to the point
of no longer being useful. For example, should cardiac recordings
(electrocardiogram), saccades, and arena locations all carry a
common behavior tag? Should muscle recordings (EMG) be
tagged both as neural and behavior in a brain-machine-interface
study? The added flexibility of an alias or tag system would

Listing 2. Retrieving data through a custom wrapper

# 1D array of timestamps
t = nwb_file.processing["behavior"] ["interpd_500"] ["
< therm_highpassed"].timestamps[:]

# 1D array of data
therm = nwb_file.processing["behavior"] ["interpd_500"
<~ 1["therm_highpassed"].datal:]

Figure 8.
retrieving the data through a custom wrapper reduces the cognitive load for the user.

# Use wrapper to create an alias to the data

interpd = MyCustomWrapper (
nwb_field="processing",
path_to_interface=["behavior", "interpd_500"],
nwb_file=nwb_file

)

# After one-time setup, simpler data retrieval
t, therm = interpd.get("therm_highpassed")

Code snippet comparison showing how to retrieve data from an NWB file using the “raw” PyNWB AP (left) compared to using a custom wrapper (right). After a one-time setup,
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(a)

Current NWB

hierarchical, processing-stage focused
standard, more structured, defined
uses hdf5 and/or pynwb

nwbfile

—o raw TIFF

—o raw behavior series
—o event tables & series
state tables & series

—o acquisition —

)

—o processing o ephys o spikes times

LFP

ophys F
EZ dF/F
behaviors spatial series
_Ez reward series
—o analysis neural stim. tuning tables
EE neural corr. w/ behaviors
PCA of behaviors

——o stimulus/image series

!

!

—O stimulus

—oO trials

—o0 metadata

on experiment
on subject

on stimulus
on devices

()

-> fluid_nwb.get(nwbfile, tags="neural")
Narrow down with
-> fluid_nwb.get(nwbfile, tags=["neural’, "proc'])

(d)

-> fluid_nwb.get(nwbfile, alias="raw_F")

Figure 9.
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(b)

Proposed "decorative layer" for fluid NWB
tag & alias support to assist query, exploration & analysis
less structured, more user/lab/community-defined

but needs a special API

Tags Alias/Pointer

raw neural

behavior
proc neural
proc neural
raw neural raw_F
proc neural dF_over_F
proc behavior
proc behavior external
proc neural stim
proc neural behavior
proc behavior
raw stim
metadata external
metadata
metadata stim
metadata neural

User: unclear where all neural-related data are, need to look through everything

pynwb: nwbfile.processing['ophys']['Fluorescence’]['RoiResponseSeries'].datal;]

A proposed design layer for the NWB standard to assist with data retrieval and organization. The nature of the current NWB structure is hierarchical and tends to be organized by

processing stages; panel (a) shows an example of this structure. Accessing relevant data requires knowledge of where it is located, which may be multiple levels deep, see for example bottom
box (d) to access raw fluorescence data with PyNWB. The proposed “decorative layer” allows for more “fluid” interaction with NWB via additional specifications in NWB objects to assist
querying, exploration and analysis with more user/lab/community’s control and customization, without breaking the existing hierarchical NWB structure. Panel (b) illustrates examples of adding
tags and aliases. Tags can be more specific, multi-faceted, and customized to concepts of recording/analysis that users tend to look for (e.g., neural, behavior, stim, and external), as well as higher
level details such as processing stages (e.g., raw and proc). Aliases and/or pointers allow users to add names for objects that are most frequently accessed, or expected to be so. Taking advantage
of this “decorative layer,” users and developers may design a fluid nwb API to interact with NWB files in a more flexible and less verbose manner, for example with tags in box (c) and

aliases in box (d).

produce the greatest benefit if complemented by a process to
secure community consensus around tagging conventions.

Discussion

Standardization is an essential component of modern data man-
agement, analysis, and sharing, and NWB has introduced a com-
prehensive and versatile data science ecosystem for neuroscience

research. However, our experience suggests that implementation
of NWB workflows at the level of individual labs or research col-
laborations still requires significant effort and commitment.
Furthermore, given the rapid pace of technology development
in neuroscience research, we expect that the development and
implementation of adequate data science tools will continue to
pose new challenges for some time. Solutions to these challenges
will likely require a reorganization of neuroscience research to
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facilitate interdisciplinary collaborations, including additional
institutional support not just for the creation of new tools but
also for their adoption by research labs at all levels of technical
capability.

Our intention with this article was to describe our experience
in implementing our own NWB pipeline. It is important to note
that some of the rough edges that we experienced have already
been improved, thanks to the NWB team being very responsive
both during our pipeline development and since the preprint ver-
sion of this article has been published online. We are convinced
that researchers should use a standard to share their data, and we
believe NWB is a serious contender for the job. We want to
acknowledge that the issues we encountered are not specific to
NWB per se and would have needed to be solved by any alterna-
tive standard. These problems and considerations are very likely
to be universal for standardizing, managing, and sharing neuro-
physiology datasets.

For researchers starting their data standardization journey
today, we would recommend using and building on top of pro-
jects such as NWB GUIDE (Flynn et al., 2024) and NeuroConv
(Baker et al., 2023). Such tools were not readily available when
we started our data standardization pipeline, but they are nowa-
days a good choice for newcomers to benefit from accessible
tools, tested by the entire NWB community. The implementation
and use of NWB standards in our labs has consistently increased
over the past five years. We anticipate that the benefits of stan-
dardized data science pipelines will be a major asset for future
generations of trainees in the labs.
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