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Abstract
The lack of sensitive and robust behavioral assessments of pain in preclinical models has been a major limitation for both pain
research and the development of novel analgesics. Here, we demonstrate a novel data acquisition and analysis platform that
provides automated, quantitative, and objective measures of naturalistic rodent behavior in an observer-independent and unbiased
fashion. The technology records freely behaving mice, in the dark, over extended periods for continuous acquisition of 2 parallel
video data streams: (1) near-infrared frustrated total internal reflection for detecting the degree, force, and timing of surface contact
and (2) simultaneous ongoing video graphing of whole-body pose. Using machine vision and machine learning, we automatically
extract and quantify behavioral features from these data to reveal moment-by-moment changes that capture the internal pain state
of rodents in multiple pain models. We show that these voluntary pain-related behaviors are reversible by analgesics and that
analgesia can be automatically and objectively differentiated from sedation. Finally, we used this approach to generate a paw
luminance ratio measure that is sensitive in capturing dynamic mechanical hypersensitivity over a period and scalable for high-
throughput preclinical analgesic efficacy assessment.
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1. Introduction

Current behavioral assessments of pain in preclinical models11,26

are essentially based on 3 distinct approaches: (1) reflex

withdrawal–based assays of sensitivity to acute mechanical and
thermal stimuli, (2) operant conditioning–based assays targeting
the aversive nature of pain and the rewarding nature of pain
relief,30 and (3) quantification of behavioral features altered or
induced by pain, which includes 2 general categories: first,
detection of behaviors such as the frequency of biting and/or
licking of a paw in pain,1 home-cage behavior,37 or facial
grimaces16 and second, changes in dynamic/static weight-
bearing14,31 and locomotor gait.36

Pain assays based on the first and second approaches have
several major limitations. The von Frey test that quantifies the
force required to prompt paw withdrawal after a static punctate
mechanical stimulus to the skin, eg, has been widely used both
for laboratory pain research and analgesic efficacy determination.
Although high-speed videography and machine learning can
make the von Frey test more objective and sensitive,2,13 the von
Frey test and other related stimulus-evoked tests only capture
snapshots of pain dynamics, conflate sedation and analgesia,
and require extensive animal–human observer interaction, which
modifies animal behavior and introduces variability to the
behavioral readout.28 On the other hand, conditioning-based
assays are not practical for large-scale analgesic efficacy
validation because they are time-consuming and influenced by
nonanalgesic drug effects, particularly those associated with
abuse liability.

Pain assays that can detect changes in the behavior of a freely
moving animal for long periods will circumvent many of these
limitations and can be automated with use of machine vision and
learning. Human-defined behaviors, such as facial grimacing and
paw biting/licking, have been used to indicate pain and assess
analgesic actions in rodents,1,16 and deep learning improves and
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Londrina, Paraná, Brazil. A.B. Wiltschko is now with the Google Research, Brain

Team, Cambridge, MA, United States. N.A. Andrews is now with the Salk Institute

for Biological Studies, La Jolla, CA, United States, b Department of Neurobiology,

Harvard Medical School, Boston, MA, United States

*Corresponding author. Address: Boston Children’s Hospital, 300 Longwood

Avenue, CLS 12258, Boston, MA, United States. E-mail address: clifford.woolf@

childrens.harvard.edu (C. J. Woolf).

Supplemental digital content is available for this article. Direct URL citations appear

in the printed text and are provided in the HTML and PDF versions of this article on

the journal’s Web site (www.painjournalonline.com).

PAIN 163 (2022) 2326–2336

Copyright© 2022 The Author(s). Published byWolters Kluwer Health, Inc. on behalf

of the International Association for the Study of Pain. This is an open access article

distributed under the terms of the Creative Commons Attribution-Non Commercial-

No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and

share the work provided it is properly cited. The work cannot be changed in any way

or used commercially without permission from the journal.

http://dx.doi.org/10.1097/j.pain.0000000000002680

2326 Z. Zhang et al.·163 (2022) 2326–2336 PAIN®

mailto:clifford.woolf@childrens.harvard.edu
mailto:clifford.woolf@childrens.harvard.edu
http://www.painjournalonline.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1097/j.pain.0000000000002680


automates the scoring of these user-defined pain-related
behaviors.6,16,29 On the other hand, movement analyses
originally developed for studying the neural circuits underlying
locomotor function in rodents4,18,33 have been applied to
assaying single hind limb-based pain models4,36 and reveal that
limb pain induces changes in locomotion. We believe that the
combination of both a bottom-up view angle of body pose to
detect body position andmovement and a luminance-based paw
surface contact measurement (using frustrated total internal
reflection technology,33 FTIR) may be advantageous in capturing
exactly how unilateral limb pain affects the avoidance of surface
contact and drives or changes distinct behaviors, such as
standing, rearing, scratching, paw biting, or grooming, as well as
locomotion, over long periods, in freely behaving animals in the
absence of an observer.

2. Methods

2.1. Experimental subjects

Adult (10-15-week-old) male and female C57BL6/J mice (Jackson
Laboratory, Bar Harbor, ME) were housed in standard clear plastic
cages with no more than 5 animals per cage under controlled
conditions (lights on 07:00-19:00; humidity 30%-50%; temperature
22-23˚C) with ad libitum access to food and water. All experiments
were performed between 9:00 and 17:00 in a roommaintained at a
temperature of 21 6 1˚C. All experimental protocols comply with
relevant ethical regulations and were approved by Boston Child-
ren’s Hospital Institutional Animal Care and Use Committee.
Animals were randomized to treatment groups.

2.2. Design of the bottom-up paw luminescence and pose
capture apparatus

The animal containment chamber consisted of an 18 (l) 3 18 (w)
3 15-cm (h) black acrylic box that was closed on all sides except
for the bottom. It was placed on a 25-cm square piece of 5-mm
thick borosilicate float glass, the “floor”. Eight hundred fifty
nanometers near-infrared (NIR) LED strips (SMD3528-600-IR,
Huake Light Electronics Co, Ltd, Shenzhen, China) were aligned
perpendicular to 2 opposing edges of the glass and held in place
using t-slot aluminum extrusions. Beneath the floor, a camera
enclosure was built using opaque black acrylic panels to prevent
light from entering the black box from below. A 253 25-cm black
acrylic surround panel with an 18 3 18-cm square cutout was
positioned on top of the glass floor panel to prevent light from
entering the camera enclosure from above. Two separate 850-
nm NIR LED strips (SMD5050-300-IR, Huake Light Electronics
Co, Ltd, Shenzhen, China) were positioned horizontally 10 cm
below the glass floor to provide illumination of the animals from
below and positioned such that reflections from the LEDs off of
the sides, top, or floor of the chamber are not visible from the
camera position.25 Power to all LEDs was provided by a 12-V DC
power supply.

2.3. Recording setup

An NIR camera (Basler acA2000-50gmNIR GigE) located 30 cm
beneath the glass surface was used to record animals in the dark.
The Pylon viewer software (v4.1.0.3660) provided by the camera
manufacturer was used to initiate video recordings. Camera
settings were stored and loaded from a pylon feature stream file
(*.pfs) to ensure the same parameters were used for each
recording. Frames were acquired at 50 Hz with dimensions 1000

3 1000 pixels. Unless noted otherwise, all frames were
downsized for analysis to 500 3 500 pixels using ImageJ’s
scaling function, specifying to average when downsizing. A
Raspberry Pi microcomputer was used to switch power on and
off to the LED strips below the glass floor on alternating video
frames based on a frame initiation signal generated by the
camera.

2.4. Hardware for data analysis

Machine learning analyses were performed using a consumer-
grade PC with an Intel i7-8700K CPU, 64 GB RAM, and NVIDIA
1080Ti GPU.

2.5. Determination of general activity levels

Animals were placed in individual chambers within the device and
recorded for 1 hour at 30 frames per second (fps).32 Python
(v3.7.3) script was designed to process the recordings using the
Computer Vision Library OpenCV (v4.1.0). Videos were down-
sampled temporally by a factor of 3, and individual chambers
spatially separated for parallel processing of animals. For each
recording and each grayscale frame, a binary threshold was used
to set pixels with values greater than 2.3 times the framemean, ie,
255, a threshold we heuristically found to help our measurements
reflect movement and exclude noise. Background subtraction
was achieved using the Gaussian mixture-based background/
foreground segmentation algorithm using OpenCV’s create-

BackgroundSubtractorMOG2 function, setting the history pa-
rameter to 100, determined to be optimal after varying its value
and empirically evaluating performance. Temporal variations in
the average of the differential binary mask, reflective of the
proportion of the mouse pixels that moved, were used as a
measure of activity over time, with the caveat that behaviors such
as rearing, where upper-body movement is occluded by the
posture of the animal and not fully detectable from this
measurement, may result in low movement values. Values lower
than 5, between 5 and 20, and higher than 20 were labeled as no
activity, low activity, and high activity, respectively. These unitless
demarcations, reflective of pixel changes, were set heuristically to
separate displacement of the entire body (values beyond 20) from
small in-place movements such as slight head rotation or paw
shifts (values between 5 and 20). The bottom delimitation (values
less than 5) helped capture and exclude noise and movements
due to breathing. Summation of the number of frames in each
activity level allowed comparison of the time spent in each
category.

2.6. Tracking of individual body parts

Five naive mice and 5 formalin-stimulated mice were each
recorded for 1 hour at 50 Hz. For each mouse, 50 body frames
(5003 500 pixels) were randomly selected and the center point of
each of the 4 paws, the snout, the centroid, and the tail basewere
manually labeled using DeepLabCut software. The 500 frames
and the corresponding 3500 labeled data points were used to
train the open-source neural network DeepLabCut (v1.0). The
DeepLabCut model achieved a training error of 1.32 pixels and a
test error of 1.64 pixels across all body parts. The tracking for
centroid had a training error of 1.28 pixels and a test error of 1.39
pixels. The model was specifically trained against video frames
containing feces in the field of view to overcome potential
interference. The trained model was used to automatically
determine the location of all 7 points of interest on new videos.
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2.7. Paw luminance measurements

For a given recording, for each pair of body frame and FTIR frame,
the locations of each hind paw were identified using the body
frame, using the DeepLabCut neural network. Individual paw
recordings were generated by extracting an area of size 233 23
squared pixels centered at the predicted paw location on each
FTIR frame, and paw luminance measured as the average
brightness of the FTIR signal in the area.

2.8. Force-to-luminance scale

A3D-printedplastic diskattached to a force transducerwas used to
collect force measurements through a MATLAB interface while
simultaneously recording hind paw luminance using our apparatus.
The experiment was performed with a single anesthetized C57BL/
6J mouse with its hind limb taped in-place to the glass surface.

2.9. Automated classification of face and body
grooming behaviors

Scoring of face and body grooming is important in a range of
neurobehavioral assays including those related to pain and
itch,3,24,27 which has been notoriously difficult because limb
movements remain close to the body and cannot be readily
differentiatedwith a top-down viewpoint. Twenty-eight (n5 28)wild-
type C57BL/6J mice were recorded in the apparatus collecting
419,846 frames, each manually labeled using a custom MATLAB
interface for 1 of 3 behaviors: face grooming (5% of all frames), body
grooming (24%), or other (71%). Videos were reconstructed by
stacking corresponding body-FTIR pairs with their mean, yielding 3-
channel videos like the standard 3-channel RGB format. All videos
were downsized in dimensions to 250 3 250 pixels using the
approach described above and placed in 1 of 3 data sets: training
(22 videos), validation (3), and test (3). All videoswere spatially aligned
and cropped using our centering and alignment procedure.

Frames were first aligned spatially along the vector connecting
the tail base to the centroid of the animal. Specifically, frames
were rotated to align the animal orientation with the positive y-axis
of the Cartesian plane (pointing upward). Background pixels,
identified as those pixels outside the binary bodymask generated
while computing the centroid, were set to 0. The aligned frames
are the input for automatic behavior scoring.

The convolutional neural network, described in Supplementary
Figure S2C (available at http://links.lww.com/PAIN/B641), was
implemented using PyTorch (v1.4), taking input video frames and
generating vectors of 3 probabilities, 1 for each behavior of
interest. Probability thresholds were set to maximize the F1 score
on the validation data set. Similarly, all hyperparameters were
optimized using random searches and set to maximize the F1
score on the validation set. Frames in which both face and body
grooming predictions were below threshold were automatically
set to other behaviors.

The model used a multiclass cross-entropy loss function
weighted by the fraction of observed positives, further penalizing
the model for errors on rare behaviors. We used the Adam
(Adaptive Moment Estimation) optimizer15 with an initial learning
rate of 1024 set to decay at a rate of 10 on saturation of
performance on the validation set for more than 10,000 training
steps, which we heuristically found to help improve performance.
The model was trained over 55,000 training steps. Each training
step consists of a forward pass of the network on 1 batch of data,
followed by a backward pass and 1 optimizer step in the
downward direction of the gradients.

The perbehavior F1 scores were calculated with respect to the
manual labels and shuffled labels, where we randomly shuffled
manual labels 100 times and calculated the F1 score for each
shuffle. F1 scores on the test set (background: 0.96059 (true
labels), 0.678 6 0.067 (shuffled labels, mean 6 SD); face
grooming: 0.39902, 0.078 6 0.030; body grooming: 0.90059,
0.3416 0.127) demonstrate a decent classification performance
for both face and body grooming. Further improvements on the
classification performance could be made by adopting more
sophisticated neural network structures.

2.10. Automated scoring of paw-biting behavior

We designed and trained a convolutional neural network with a
similar architecture as that described above for classifying single
frames of videos into “paw biting” or “not paw biting”. The
classifier was trained on 8 videos of formalin-stimulatedmice. The
probability threshold was set as 0.5 for classifying new frames.
The scoring of paw biting is defined as the time an animal spent
biting its injured paw in each 5-minute bins after formalin injection.
When scoring an unseen video, the automatic scorer first
classifies each single frame, then calculates the percentage of
frames classified as paw biting in each 5-minute bins and
converts it to the time spend as paw biting. We tested the scorer
on 8 videos of formalin-stimulated mice and compared its
performance to human labeling. In 4 of those 8 videos, mice
were treated with morphine before the formalin test.

2.11. Paw luminance measurements as an indicator of pain
behavior and analgesia

To pool the paw luminancemeasures of individual animals, the paw
luminance values for each animal were first scaled with a min-95
quantile scaler such that all data points for a single recording were
first subtracted by the minimum value and then divided by the
difference between the 95th quantile and the minimum value.

2.12. Tracking locomotion

For a given recording, the location of tail base was extracted from
body frames using the DeepLabCut. The distance traveled from
frame to frame was calculated as the Euclidean distance between
the locations of tail base in consecutive body frames. The
accumulative locomotion over time, in the unit of pixel distance,
was defined as the sumof the distance traveled from frame to frame.

2.13. von Frey test

Mice were habituated to the testing environment over 3
independent sessions of 1 hour each conducted on consecutive
days. Mechanical hypersensitivity was assessed using von Frey
filaments applied to the affected hind paw, with a positive
response consisting of a paw lifting or flinching response to the
fiber. The response patterns were collected and converted into
corresponding 50% withdrawal thresholds using the Up–Down
Reader10 software and associated protocol. Treatments were
randomized, and all tests were performed by investigators
blinded to the treatments.

2.14. Intraplantar formalin injection

C57BL6/J male mice were given an intraplantar injection of
formalin (5%, 10 mL/paw) in the left hind paw and subsequently
recorded in the enclosure.
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2.15. Morphine treatment

Mice were injected subcutaneously with morphine (3 mg/kg
morphine dissolved in 0.3 mg/mL saline solution; NDC 0641-
6127-25, WEST-WARD, Eatontown, New Jersey) or saline
control 30 minutes before formalin injection.

2.16. Paw-biting behavior

Sixteen adult (8-10-week-old) C57BL6/J male mice were give
intraplantar formalin treatment and recorded for 40 minutes. Four
of the 16 mice were treated with subcutaneous morphine
injection. All videos were manually scored for paw-biting
behavior, and the scorings were used for training of the paw-
biting algorithms.

2.17. Ultraviolet radiation burn model

Six C57BL6/J male mice were anesthetized with 3% isoflurane.
UV irradiation was performed on the left hind paw under
sustained anesthesia with 1.5% isoflurane at an intensity of 1 J/
cm2 for 2 minutes using a wavelength of 305 to 315 nm using a
fluorescent UV-B light source (XR UV LEDs 308 nm, RayVio,
Hayward, California). Forty-eight hours after irradiation, the von
Frey test was performed, and the mice were recorded for 10
minutes in the enclosure. Another set of 5 mice received only
isoflurane anesthesia without UV irradiation and used as a
control.

2.18. Zymosan inflammation model

Inflammatory pain was induced by zymosan injection in 5 female
C57BL6/J mice. The left hind paw was injected subcutaneously
with 20mL of zymosan (5mg/mL in saline; Z4250, Sigma-Aldrich,
St. Louis, Missouri). Four hours after the injection, the von Frey
test was performed, and themicewere recorded for 10minutes in
our enclosure. Another set of 5micewere injectedwith only saline
and used as a control.

2.19. Paw skin incision model

Eight male mice were anesthetized with 2% isoflurane, and a 5-
mm longitudinal skin incision was made on the plantar surface of
the left hind paw using a number 11 surgical blade. The incision
was superficial, and the subdermal tissue was not exposed or
damaged. Mice were returned to their home cage for full recovery
from anesthesia before behavioral tests.

2.20. Knee complete Freund adjuvant injection model

Sixmalemice were anesthetized with 2% isoflurane, and 10mL of
complete Freund adjuvant (CFA) was injected to the left knee joint
using a 31-gauge insulin needle. Mice were recorded 3 days after
the CFA injection.

2.21. Spared nerve injury model

Spared nerve injury surgery was performed under isoflurane
anesthesia (3% induction/2% maintenance) on adult mice. The
skin on the lateral surface of the thigh was incised and a section
made directly through the biceps femoris muscle exposing the
sciatic nerve and its 3 terminal branches. The tibial and common
peroneal branches were tightly ligated with a 5-0 silk suture and
transected distally to the ligation, removing 46 2mm of the distal

nerve stump, whereas the sural nerve was left intact. After injury,
incisionwas suturedwith a 6-0 silk suture, andmicewere allowed
to recover on heated pads before being returned to their home
cage.

2.22. Sciatic nerve crush injury model

Sciatic nerve crush surgery was performed under isoflurane
anesthesia (3% induction/2% maintenance) on adult mice. The
skin on the lateral surface of the thigh was incised and a section
made directly through the biceps femoris muscle exposing the
sciatic nerve and its 3 terminal branches. The sciatic nerve was
crushed for 10 seconds by a pair of hemostatic forceps. At the
end of this procedure, the nerves were completely flattened and
transparent. After injury, incision was sutured with a 6-0 silk
suture, and mice were allowed to recover on heated pads before
being returned to their home cage.

2.23. Sham control for both spared nerve injury and sciatic
nerve crush injury models

Sham surgery was performed under isoflurane anesthesia (3%
induction/2%maintenance) on adult mice. The skin on the lateral
surface of the thigh was incised and a section made directly
through the biceps femorismuscle exposing the sciatic nerve and
its 3 terminal branches. Then, the incision was sutured with a 6-
0 silk suture, and mice were allowed to recover on heated pads
before being returned to their home cage.

2.24. Ketorolac treatment in ultraviolet radiation burn model

Ten male C57BL6/J mice received the ultraviolet stimulus
described above. Forty-eight hours after UV irradiation, 5 mice
were injected intraperitoneally with 10 mg/kg ketorolac dissolved
in 250mL of saline, whereas the other 5mice received only saline.
One hour after injection, mice were recorded for 10minutes in our
apparatus.

2.25. Ketorolac treatment in zymosan model

A total of 40 male mice were randomly assigned to either the von
Frey group or recording group. After baseline session(s), all mice
received 20 mL of zymosan in the left hind paw. Four hours after
zymosan injection, another session of either von Frey test or
recording in our enclosure was conducted (pretreatment). The
mice then received single bolus intraperitoneal injection of
ketorolac at doses of 1, 3, or 10 mg/kg, or saline (n 5 5 each).
One hour later, either von Frey test or recording in the bottom-up
device was conducted (posttreatment).

2.26. Diazepam treatment in zymosan model

After baseline session, 5 mice received 20 mL of zymosan in the
left hind paw. Four hours after zymosan injection, another
session of recording in our enclosure was conducted (pre-
treatment). The mice then received single bolus intraperitoneal
injection of diazepam at dose of 5 mg/kg. Thirty minutes later,
recording in the bottom-up device was conducted
(posttreatment).

2.27. Quantification and statistical analysis

Statistical analyses were performed using GraphPad Prism (v.
8.0.0). Data are expressed as mean 6 SEM for mouse
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mechanical withdrawal (von Frey) experiments and for compar-
ison of paw luminance values. Tests used for statistical
significance are reported in figure legends. P values are indicated
in figures, with values less than 0.05 considered significant. The
number of animals used is defined in figure legends.

3. Results

3.1. Behavioral assessment system for rodent limb pain

Wehypothesized that if a disease condition producesmechanical
pain hypersensitivity, the force applied to a surface through the
painful part of the body will be reduced because of the reduction
or avoidance of contact.We sought to test whether a detailed and
continuous measurement of the pressure applied to a surface
through an affected limb, together with the contextual information
of different naturalistic behaviors, would generate a sensitive and
dynamic measurement of mechanical pain hypersensitivity, and
its disruption by analgesics, in rodent hind limb pain models.

We engineered a device that simultaneously records the pose
of a freely moving rodent’s body (for applying ethological
behavioral analyses) and an FTIR luminance-based signal of
paw surface contact as a measure of mechanical sensitivity (Fig.
1A, Supplemental Video 1, available at http://links.lww.com/
PAIN/B642 and the Methods section). Body pose is recorded by
a camera under a glass surface using NIR transillumination LEDs,
which reveal the entire ventral view of the rodent body. Light from
a separate set of NIR (850 nm) LEDs enters perpendicular to the
edge of the glass sheet to produce an evanescent light field at the
planar air–glass interface that is scattered on paw contact to
provide a force-sensitive light/luminance signal. This FTIR signal
is captured separately from the body pose images by supplying
power to the transillumination LEDs only on alternating video
frames, revealing footprint contact features of the animal. The
FTIR luminance signal is then combined with the body pose
recording such that the interleaved imaging channels produce
paired video streams of the ventral body pose and the body
surface contact, each at 25 fps. The animal is allowed to freely
explore in a dark and isolated chamber, which mitigates the
potential olfactory, auditory, or visual cues of predators, including
investigators in a laboratory setting7,28 (Supplemental Fig. S1,
available at http://links.lww.com/PAIN/B641).

Superimposition of the FTIR signal on body pose recordings
reveals rich locomotor information not discernible with either
video image alone, such as whether a paw is in contact with the
surface or just held close to it, and changes in the shape and area
of plantar surface contact of each paw during different behaviors
(Fig. 1B, Supplemental Video 2, available at http://links.lww.
com/PAIN/B643). Furthermore, by manually applying force to the
paw of an anesthetized mouse using a force transducer while
recording the luminance of the paw contact area, we found that
FTIR paw luminance increases linearly to the downward force
transmitted through the paw to the glass over a physiologically
relevant range (0-30 g) (Fig. 1C) and is therefore a measure of
mechanical contact force. This range is below the saturation level
of the FTIR signal and is linear (Fig. 1C).

An automatic processing pipeline was constructed for
extracting the FTIR luminance signal of both hind paws from
the recordings of freely behaving animals (Supplemental Video 3,
available at http://links.lww.com/PAIN/B644). First, a deep neural
network, DeepLabCut,19 was used on the body pose signal for
the tracking of 7 individual body parts (snout, tail base, centroid,
and 4 paws). The paw luminance value for each paw at every time
point was then determined by first identifying the location of the

paw using the body pose frame and then extracting the average
pixel intensity in a square box centered around the paw location in
the paired FTIR frame.With this pipeline, dynamic paw luminance
signals for each hind paw can be measured as the animal
performs naturalistic behaviors, such as walking, where there is a
patterned alternating surface contact of each paw (Fig. 1D), and
the relationship of paw contact to a particular behavior can then
be readily assessed. After urination, any wet paw appears
brighter in the paw luminance signal. We found that habituation
significantly decreased the amount of urine and feces produced
during an actual recording period. Therefore, the animals were
habituated in the recording device for 30 minutes before video
acquisition, and the floor was cleaned before the video
acquisition.

3.2. Pain and analgesia signals of acutely induced pain

We first examined whether the FTIR luminance value of each hind
paw captures and quantifies key behavioral features of the pain
that is induced by the intraplantar injection of formalin and of the
analgesia produced by morphine in this model. Plantar formalin
injection is an acute nociceptive pain model commonly used in
analgesic drug discovery.1 The formalin injection evokes sus-
tained pain-related behaviors over 30 minutes through activation
of nociceptor TRPA1 channels.20 The biphasic paw-biting
behavior elicited is a primary pain behavioral readout currently
used in preclinical analgesic development and is typically scored
manually.

From individual recordings, changes in the behavior of mice on
intraplantar injectionof formalin in 1hindpawwerecombinedwith an
inspection of paw luminance signals (Fig. 2A). Although an
intraplantar saline injection is considered to represent a “vehicle
control”, the paw luminance signals of individual mice from the
intraplantar saline injection sham group captured an asymmetry
between 2 hind paws, with a lower luminance value of the injected
paw, which reflects unilateral increased mechanical pain sensitivity
while the mouse was walking and rearing. Paw luminance signals of
mice from the intraplantar formalin injection group showed an even
greater asymmetry between the 2 hind paws, one that was
moreover persistent through all behaviors, reflecting a prominent
mechanical pain hypersensitivity induced by formalin injection such
that contact of the injected paw with the surface was substantially
reduced. Mechanical hypersensitivity in the first 30 minutes
immediately after formalin injection, which precedes tissue in-
flammation, has not been reported before. The analgesia group
(subcutaneous morphine (3 mg/kg) and intraplantar formalin
injections) showed a restoration of symmetry between 2 hind paws,
but this was present only when the mouse was walking, not when
rearing or pausing, something that could not bedetectedwithout the
combined body pose and surface contact measurements. The
example traces in Figure 2A indicate that the paw luminance ratio
can capture the presence ofmechanical pain hypersensitivity and its
reversal with morphine in the formalin model, as well as novel
features of pain-related behavior and analgesia, ie, its onset,
duration, and association with locomotory activities of the mouse.
Although in the current study we focused on characterizing the
changes captured by the average luminance signal, the resolution of
the paw luminance signal indicates that subtle differences between
animals doing the same behaviors (eg, walking or rearing) in different
pain states could be comprehensively characterizedwith the device.

The temporal dynamics of the paw luminance ratio in the
formalin group (n5 6) showed a biphasic decrease, with the first
phase at 0 to 5minutes and the second phase at 15 to 30minutes
after formalin injection, capturing the well-described 2 phases of
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pain in the formalin model,1 whereas the temporal dynamics of
the analgesia group (n 5 5) showed a partial reversal of the first
phase and a complete reversal of the second phase towards the
baseline levels present in the sham group (n 5 6) (Fig. 2B).
Unilateral formalin injection drove the dynamics of the paw
luminance ratio away from the baseline (indicating an asymmetry
between ipsilateral (injected) and contralateral (noninjected) hind
paws), and its relief by morphine reversed the ratio towards the
baseline (Fig. 2C). The change in the paw luminance ratio further
indicated a weight redistribution between the ipsilateral and the
contralateral hind paws (Supplemental Fig. S2A, available at
http://links.lww.com/PAIN/B641). We chose a ratio of paw
luminance as the readout because it was robust across multiple
recordings. The paw luminance ratio is invariant to size
differences between animals and to potential calibration differ-
ences between recordings by different cameras. The average
paw luminance ratio over 30 minutes distinguished the formalin
group from the sham and the analgesia groups with P values of
0.0006 and 0.0001, respectively (Fig. 2D), and represents,
therefore, a robust measurement of mechanical pain dynamically
assessed over time.

In addition to paw luminance measurements, we simultaneously
extracted behavioral features from the same set of recordings. This
analysis, eg, identifiedmorphine-induced hyperlocomotion, which is
adocumentedsideeffect of systemic injectionofmorphine inmiceat
3 mg/kg22 (Supplemental Fig. S2B, available at http://links.lww.
com/PAIN/B641). Based on the body pose recordings, we were
also able to implement a supervised deep-learning pipeline that
automatically labeled multiple classes of user-defined behaviors,
such as face grooming, body grooming, and paw biting (Supple-
mental Fig. S2C, available at http://links.lww.com/PAIN/B641; the
Methods section). Using an independently trained automatic paw-
biting scorer, we identified the biphasic paw-biting behavior in the
formalin model and found a reduction of paw biting in themorphine-
treated group (Supplemental Fig. S2D, available at http://links.lww.
com/PAIN/B641). The combination of paw luminance and paw-
biting detection in a single animal now enables the temporal
relationship between mechanical pain hypersensitivity and a
spontaneous pain-related behavior to be assessed.

These results indicate that an extended unilateral decrease in
paw luminance during spontaneous behaviors over many
minutes can be readily quantified as an averaged ratio and

Figure 1. Bottom-up freely moving behavioral assessment system. (A) Schematic of recording device illustrating NIR transillumination and FTIR, captured using a
single NIR camera, each at 25 fps. (B) Representative frames from transilluminated (body frame) and FTIR channels. FTIR signal captures subtle footprint patterns
of freely moving mice. (C) Relationship between normalized hind paw FTIR luminance signal (red) and force applied to a paw (black). Scatterplot demonstrates
linear relationship (R25 0.85) between force and luminance over a physiologically relevant range, and data points represent individual force transducer application
in a single mouse. (D) Demonstration of dynamic FTIR luminance signals (25 fps) for each hind paw during different naturalistic behaviors. Paw luminance signals
are scaled (min-95 quantile) and are shown in arbitrary unit (a.u). fps, frames per second; FTIR, frustrated total internal reflection; NIR, near-infrared.
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serves as a robust indicator of ongoing mechanical pain in a
unilateral hind limb. The decreased average paw luminance ratio
is a composite of mechanical pain-induced changes across a
range of naturalistic behaviors, including gait alteration during
walking; weight redistribution between hind paws while groom-
ing, pausing, and rearing; as well as an increased frequency of
ipsilateral pain-elicited behaviors such as paw biting and paw
guarding. The information on both the natural behavior and the
mechanical sensitivity of freely behaving animals simultaneously
captured by the recording device enables us not only to extract
multiple behavioral features indicating mechanical pain and
analgesia, without applying a stimulus, but also to identify
unwanted side effects of drugs, such as sedation or hyper-
locomotion. Unsupervised learning-based methods therefore
have promise for detecting novel pain-related and analgesia-
related behavioral features in freely moving animals in an
unbiased manner.12,35

3.3. Paw luminance phenotypes multiple pain states

Robust decreases in the average paw luminance ratio were also
observed in a set of unilateral hind limb pain models that capture

multiple unique and different pain states, including inflammatory
models associated with a burn injury (plantar ultraviolet radiation
burn model, UVB, n 5 6, 48 hours after injury), local pathogen
invasion/infection (intraplantar zymosan injection model21 (zy-
mosan is a glucan ligand found on the surface of fungi),
zymosan, n 5 5, 4 hours after injury), and traumatic injury (paw
skin incision model, n 5 8, 1 hour after injury), as well as
neuropathic pain (spared nerve injury model,9 SNI, n 5 8,
recorded at 8 weeks after injury), and knee joint inflammation
(knee CFA injection model,17 n5 6, 3 days after injury) (Fig. 3A).

Paw luminance signals from individual recordings from mice
subjected to the knee CFA injection and the SNI models
demonstrated that both models induced profound surface
contact force asymmetry between the 2 hind limbs, as compared
to untreated control animals (Fig. 3B andC). Further investigation
is needed to determine whether the decrease in the average paw
luminance ratio in the SNI model is caused by underlying
mechanical pain hypersensitivity alone, or motor dysfunction
due to muscle denervation, or a combination of both.

To explore whether paw luminance measurements capture
functional recovery after peripheral nerve injury, we used a sciatic
nerve crush injury model (n5 5) that has been used extensively to

Figure 2. FTIR paw luminance signals capture pain-related and analgesia-related changes in the intraplantar formalin model. (A) Example of scaled (min-95
quantile) paw luminance signals of ipsilateral (red) and contralateral hind paw (black) of mice from sham (intraplantar saline) (top), formalin (middle), and morphine
analgesia groups (3 mg/kg subcutaneous injection, bottom) during different behaviors. (B) Logarithm of paw luminance ratio (calculated as
logarithmic

�
luminanceipsilateral-paw
luminancecontralateral-paw

�
, log ratio) over the 30 minutes after intraplantar formalin/saline injection (n 5 6, 6, and 5 for sham, formalin, and analgesia

groups). (C) Density histograms of paw luminance log ratio over a 30-minute recording ofmice from sham (black, n5 6), formalin (red, n5 6), and analgesia groups
(blue, n5 5). Formalin reduced the log ratio, and this was returned to control levels by morphine. (D) Average paw luminance ratio over a 30-min recording of mice
in the 3 groups (n5 6, 6, and 5) detected both themechanical pain hypersensitivity induced by formalin and the analgesic efficacy ofmorphine. Shading in panel (B)
indicates 95%confidence interval asmean6 1.963SEM. Data in panel (D) presented asmean6SEM. Statistical significance for panel D determined by the 2-tail
unpaired Student t test. FTIR, frustrated total internal reflection.
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study peripheral nerve injury repair with a range of motor and
sensory assessments.5,34 The average paw luminance ratios over
20 minutes indicated that sciatic nerve crush-injured mice
exhibited functional recovery of paw contact as early as 2 weeks
after injury (Fig. 3D), in contrast with the persistent changes
observed in the SNI model (Supplemental Fig. S3, available at
http://links.lww.com/PAIN/B641). Together, these findings in-
dicate that this method can be used as a sensitive behavioral
readout for functional recovery after nerve injury.

3.4. Quantifying in vivo analgesic actions

To probe the utility of our method in quantifying the in vivo efficacy
of analgesics, we measured the average paw luminance ratio
over 10 minutes in 2 inflammatory pain models, the UVB model
and the zymosan model. We then compared the performance of
the paw luminance assay against changes in mechanical
withdrawal threshold hypersensitivity measured by the von Frey
assay in response to treatment with the nonsteroidal anti-
inflammatory drug ketorolac. Decreases in average paw lumi-
nance ratios of inflamed to uninjured hind paws (Fig. 3A) matched
the mechanical withdrawal threshold hypersensitivity presented
in the von Frey assay (Supplemental Fig. S4A, available at http://
links.lww.com/PAIN/B641). Both the mechanical hypersensitivity
induced in the UVB model and the analgesic effect of ketorolac
were readily revealed by paw luminance measurements from
individual animals (Fig. 4A), an indication of the low interanimal

variation of this measurement, which shows that it could be used
to accurately assess mechanical pain in small numbers of
animals. The decrease in average paw luminance ratios in the
UVBmodel was reversed by systemic administration of ketorolac
at 10 mg/kg (Fig. 4B, n 5 5 for each group).

We then compared paw luminance and von Frey threshold
changes in intraplantar zymosan-administered mice when
treated with 3 different doses of ketorolac (1, 3, or 10 mg/kg;
n5 5 for each group). Although the effect of ketorolac, even at the
highest dose tested on von Frey mechanical hypersensitivity in
this inflammatory model, was not significant compared with the
saline control (Fig. 4C), the average paw luminance ratio showed
a significant reversal after both 3 and 10 mg/kg ketorolac
treatment with P values of 0.0334 and 0.0445, respectively (Fig.
4D). A significant effect of the high-dose ketorolac (10mg/kg) was
captured with von Frey mechanical hypersensitivity measures
with a P value of 0.011, but only with a group size of 10
(Supplemental Fig. S4B, available at http://links.lww.com/PAIN/
B641), whereas a high significance was detectable with the paw
luminance ratio with a group size of 5 (Fig. 4D). We conclude,
therefore, that the paw luminance measurement of mechanical
pain is more sensitive than the von Frey assay in detecting the
analgesic effect of ketorolac onmechanical pain in thismodel and
that the 2 measures capture different features, an evoked
response to an applied static punctate mechanical stimulus
(von Frey) and a shift in paw surface contact from the injured to the
control paw over an extended period during freely moving

Figure 3. Paw luminance measurements in multiple unilateral pain models. (A) Average paw luminance ratios over 10 minutes for untreated mice (naive, n 5 8),
after ultraviolet radiation burn (48 hours after injury, n 5 6), local pathogen-induced inflammation (zymosan, 4 hours after injury, n 5 5), traumatic injury (skin
incision, 1 hour after injury, n5 8), neuropathic pain (SNI, n5 8, 8 weeks after injury), and joint inflammation (knee CFA, n5 6, 3 days after injury). (****P, 0.0001).
(B) Example of scaled (min-95 quantile) paw luminance signals of both ipsilateral (red) and contralateral hind paws (black) of a mouse with knee CFA-induced
inflammation. (C) Example of scaled (min-95 quantile) paw luminance signals of a mouse from the SNI model at 8 weeks after surgery. (D) Average paw luminance
ratio over 20-minute recording captures functional recovery in 4 weeks after SNc (crush, red, n5 5), compared with the sham group (black, n5 5). The measures
of individual mice are shown as shaded lines. Data in panel A and D presented as mean 6 SEM. Statistical significance for panel A determined by the Dunnett
multiple comparison test and in D by the 2-tail unpaired Student t test. CFA, complete Freund adjuvant; SNc, sciatic nerve crush; SNI, spared nerve injury; UVB,
ultraviolet radiation burn.
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behavior. Based on the body surface area and the Food and Drug
Administration guidance,8 3 to 10 mg/kg is approximately
equivalent to the human dose used in the clinical settings (0.25-
1 mg/kg), indicating that the paw luminance measurement can
pick up analgesic effects in mice at clinically relevant human
doses.

Furthermore, the paw luminance measurement distinguishes
analgesic effects from sedative activity. Diazepam induces
significant sedation in mice at 2 mg/kg dosage23 without any
reported analgesic effect. We extracted both the distance
traveled and the average paw luminance ratio in mice (n 5 5)
recorded for 10 minutes at baseline and 4 hours after intraplantar
zymosan injection. The zymosan injection resulted in a reduction
in the average paw luminance ratio (Fig. 4E) and a decrease in
locomotion (Fig. 4F), both of which represent consequences of
the pain the animal experiences. Diazepam (5 mg/kg, n5 5) was
then administered to the zymosan-treated mice and 10-minute
recordings made 30 minutes later. Diazepam-induced sedation
was captured by a significant further decrease in locomotion (Fig.
4F), but the decreased average paw luminance ratio produced by
the zymosan was not changed by the diazepam administration

(Fig. 4E), indicating that the asymmetry in paw luminance in mice
with inflammatory pain continued to be detectable even when
mice were sedated and that a reduction in locomotion could be
caused both by pain and sedation. By contrast, morphine
increased locomotion and yet normalized the average paw
luminance ratio in the formalin model.

4. Discussion

Incorporating integrated body pose and FTIR data acquisition
with machine learning in multiple unilateral animal pain models
shows we can readily capture behavioral features indicating the
presence of ongoing mechanical pain. Dynamic paw luminance
represents an objective and highly sensitive indicator of
mechanical pain and/or motor dysfunction in multiple different
inflammatory or neuropathic disease states. From the FTIR
measurements of mechanical pain hypersensitivity, we con-
structed a readily scalable assay for in vivo analgesic efficacy
determination and benchmarked its superior performance in
detecting analgesic effects against the conventional von Frey
mechanical pain hypersensitivity assay. We also show that the

Figure 4. Average paw luminance ratio evaluation of analgesia in the inflammatory pain model. (A) Paw luminance signals of an individual animal showmechanical
hypersensitivity in the injured paw (left hind paw) induced by UVB (left panel) detected by reduced luminescence and increased luminescence as ameasure of the
analgesic effect of ketorolac (10 mg/kg, right panel). (B) Ketorolac 10 mg/kg recovered the average paw luminance ratio in UVBmice to control (ratio5 1) levels (n
5 5 for each group). (C) Effect of ketorolac (1mg/kg, 3mg/kg, 10mg/kg, and saline control; n5 5 for each group) on von Freymechanical thresholds and (D) on the
average paw luminance ratio. Baseline readouts were conducted before zymosan injection, the “pre” readouts were 4 hours after zymosan injection but before
ketorolac administration, and the “post” were 1 hour after ketorolac administration. For the average paw luminance ratio, a significant reversal from saline levels
was detected after 3 and 10mg/kg ketorolac treatment. (E) Average paw luminance ratio and (F) total distance traveled (in pixel unit) and for 10-minute recordings,
baseline readouts were conducted before zymosan injection, the “pre” readouts were 4 hours after zymosan injection but before diazepam administration, and the
“post” were 30minutes after diazepam. Data in panel (B), (C), (D), (E), and (F) presented as mean6 SEM. Statistical significance for panel (B) determined by the 2-
tail unpaired Student t-test; for (C) and (D) by 2-way ANOVA repeatedmeasures, followed by theDunnett post hoc analysis; and for (E) and (F) by the paired Student
t-test. UVB, ultraviolet radiation burn.
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platform can also be used to screen for drug side effects, such as
hyperlocomotion or sedation.We have identified, therefore, away
of measuring dynamic changes in mechanical pain hypersensi-
tivity over time in an unbiased, observer-independent manner,
without the need for any applied stimulation, that is a highly
sensitive indicator of the presence of this form of pain and its
disruption by analgesics. We list the multiple differences between
the von Frey and the paw luminance assays in Table S1 (available
at http://links.lww.com/PAIN/B641). The von Frey assay is
suitable for specific requirements, such as quantifying static
mechanical thresholds of defined areas, whereas our approach
detects mechanical pain in limbs over time.

The bottom-up imaging technology is also very different from
existing locomotion analysis platforms (eg, CatWalk andDigiGait),
which have been used to measure pain and analgesia in
rodents.4,33 First, ourmeasure is based on spontaneous behavior
over tens of minutes, whereas the others are based on either
involuntary walking on a treadmill or walking across a narrow
corridor over seconds in the light and in the presence of an
observer. Second, those platforms require training sessions for
animals to learn the walking task and manual correction of
mislabeled frames in data processing, whereas our method
requires no animal training or human supervision.

The data processing for the paw luminance assay is automated
and requires minimal human input time, which could be
expanded to parallel processing of multiple recordings with
sufficient computing resources. The computation time for
processing a single 30-minute recording on a consumer-grade
PC (hardware specifications in Methods) was about 2.5 hours.
More specifically, the preprocessing step for generating video
files from the raw data took ;2 hours, the DeepLabCut
processing time was ;15 minutes, automated behavior classi-
fication took;25 seconds, and extracting paw luminance signal
took ;2.5 minutes.

By providing a continuous recording of a freely moving mouse
in the dark from below, together with a synchronized high-fidelity
body surface contact measurement, and with automatic feature
extraction pipelines, we believe that this technology will have
utility for characterizing a broad range of physiological and
pathological phenomena beyond ipsilateral hind limb pain
models, such as visceral or chronic spontaneous neuropathic
pain, and in detecting and quantifying the behavioral conse-
quences of many conditions such as sedation, malaise, anxiety,
and neurodegenerative and other neurological diseases.
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