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Spontaneous behaviour is structured by 
reinforcement without explicit reward

      
Jeffrey E. Markowitz1,7,8, Winthrop F. Gillis1,8, Maya Jay1,8, Jeffrey Wood1, Ryley W. Harris1, 
Robert Cieszkowski1, Rebecca Scott1, David Brann1, Dorothy Koveal1, Tomasz Kula1, 
Caleb Weinreb1, Mohammed Abdal Monium Osman1, Sandra Romero Pinto2,3, 
Naoshige Uchida2,3, Scott W. Linderman4,5, Bernardo L. Sabatini1,6 & Sandeep Robert Datta1 ✉

Spontaneous animal behaviour is built from action modules that are concatenated  
by the brain into sequences1,2. However, the neural mechanisms that guide the 
composition of naturalistic, self-motivated behaviour remain unknown. Here we 
show that dopamine systematically fluctuates in the dorsolateral striatum (DLS) as 
mice spontaneously express sub-second behavioural modules, despite the absence  
of task structure, sensory cues or exogenous reward. Photometric recordings and 
calibrated closed-loop optogenetic manipulations during open field behaviour 
demonstrate that DLS dopamine fluctuations increase sequence variation over 
seconds, reinforce the use of associated behavioural modules over minutes, and 
modulate the vigour with which modules are expressed, without directly influencing 
movement initiation or moment-to-moment kinematics. Although the reinforcing 
effects of optogenetic DLS dopamine manipulations vary across behavioural modules 
and individual mice, these differences are well predicted by observed variation in the 
relationships between endogenous dopamine and module use. Consistent with  
the possibility that DLS dopamine fluctuations act as a teaching signal, mice build 
sequences during exploration as if to maximize dopamine. Together, these findings 
suggest a model in which the same circuits and computations that govern action 
choices in structured tasks have a key role in sculpting the content of unconstrained, 
high-dimensional, spontaneous behaviour.

Spontaneous behaviour exhibits structure. Ethologists have long 
argued that the self-motivated behaviour of animals in the wild is flex-
ibly built from modular components that are linked together over time 
in a predictable yet probabilistic manner1. Many well-studied laboratory 
behaviours—including chemotaxis, grooming, prey seeking, courtship, 
birdsong and exploratory locomotion—are similarly characterized by 
modularity and predictability2–5. However, it remains unclear how the 
brain regulates the expression of individual behavioural modules at any 
given moment, or how it dynamically composes these modules into the 
fluid behaviours observed when animals act of their own volition in the 
absence of experimental restraint, task structure or exogenous reward.

Given that the loss of dopaminergic neurons from the substantia 
nigra pars compacta (SNc) causes diffuse deficits in action initiation 
and sequencing, it is likely that the neuromodulator dopamine influ-
ences the architecture of spontaneous behaviour6–8. Yet we know little 
about the precise relationship between dopamine and behaviour when 
animals freely explore an environment. Although dopamine is thought 
to motivate spontaneous behaviour and to influence the vigour with 
which actions are expressed, evidence is mixed as to whether phasic 
dopamine transients are permissive or causal for movements, whether 
dopamine rises or falls when animals initiate a movement, and whether 

dopamine fluctuations specify movement kinematics in freely behav-
ing animals6,9–19. By contrast, during structured tasks in which animals 
seek explicit and often cued rewards, phasic dopamine clearly conveys 
information related to reward and reward-prediction errors, reinforces 
reward-associated actions, and influences the choices made between 
alternative actions20–25.

Dopamine may have distinct roles during spontaneous and task- 
structured behaviours, given the many ways in which they differ; for 
example, spontaneous behaviours generally exhibit a greater variety 
of expressed behavioural modules, include more complex behavioural 
sequences, and tend to emphasize self-initiated movements associated 
with active sensing2,4,26. Nevertheless, both spontaneous behaviour and 
structured tasks demand that animals choose actions on an ongoing 
basis from a distribution of possibilities, suggesting that dopamine may 
influence the continuous assembly of naturalistic sequences through 
mechanisms similar to those used to support goal-driven action selec-
tion in response to rewards.

To test this hypothesis, here we characterize mouse spontaneous 
behaviour using motion sequencing (MoSeq)—which uses 3D imag-
ing and unsupervised machine learning to atomize behaviour into 
sub-second modules referred to as ‘syllables’—while simultaneously 
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assessing and manipulating dopamine transients in DLS, a region of the 
basal ganglia implicated in the composition of natural behaviours27–29. 
As SNc dopaminergic neurons acutely influence the population activity 
of DLS spiny projection neurons (SPNs) and induce plasticity in corti-
costriatal synapses30, DLS dopamine fluctuations may be particularly 
relevant to syllable expression and/or sequencing.

We find that DLS dopamine systematically fluctuates during 
the expression of behavioural syllables, and—through calibrated 
closed-loop manipulations of DLS dopamine—demonstrate that these 
fluctuations are causally related to syllable usage, sequencing and vig-
our. A simple computational model in which syllable-associated dopa-
mine transients shape sequence composition effectively reproduces 
the observed behavioural choices made by mice during spontaneous 
behaviour. These results reveal that DLS dopamine transients act as a 
continuous teaching signal, one that affords spontaneous behaviour 
its moment-to-moment structure; our observations further suggest a 
broad model in which the composition of spontaneous behaviour from 
elemental components is supported by the same computations and 
circuits that govern action choices in more structured tasks.

Relating DLS dopamine to spontaneous behavior
To characterize the relationship between striatal dopamine release and 
spontaneous behaviour, we virally expressed the dopamine reporter 
dLight1.1 in DLS neurons, and then assessed dopamine fluctuations via 
photometry as mice explored a featureless open field in the dark31. In 
concert with these neural measurements, we both quantified conven-
tional movement parameters and performed MoSeq4 (Fig. 1a–d and 
Extended Data Fig. 1). In this setting, MoSeq identified 37 commonly 
used behavioural syllables, whose median duration was 400 ± 636 ms, 
ranging from pause syllables in which mice adopted different static 
poses, to dynamic syllables in which mice reared, groomed or explored 
(Extended Data Fig. 2a–c). Syllables varied in terms of how often they 
were used and the order in which they occurred as time unfolded dur-
ing each experiment (Extended Data Fig. 2b,d–g).
Photometry revealed pervasive, fast dopamine fluctuations in DLS 
that occurred throughout each experiment regardless of whether the 
mouse was actively moving or relatively still (average rise time dur-
ing spontaneous behaviour = 67 ms, decay time = 100 ms; Fig. 1d and 
Extended Data Fig. 1e,h). These dopamine fluctuations (measured as 
both dLight transient rates and average binned amplitudes) were only 
weakly correlated with many aspects of movement kinematics (for 
example, turning, rearing and acceleration) but were significantly 
negatively correlated with translational velocity at short timescales 
(<10 s); this correlation reversed and became positive at longer time-
scales, consistent with the idea that dopamine broadly invigorates 
and motivates movement6,9,17,32 (Fig. 1e). We validated the relationship 
between translational velocity and dopamine transients using 3D key-
point tracking, which also demonstrated that forelimb movement 
per se (that is, independent of translation) only negligibly correlated 
with dopamine transients (Extended Data Fig. 3).
As has been observed previously, dopamine systematically fluctuated 
when mice initiated a movement after pausing in the arena9 (Fig. 1f). 
However, we also observed that dopamine fluctuated as mice transi-
tioned from one behavioural syllable into the next. These fluctuations 
exhibited a characteristic dip-then-peak pattern surrounding each syl-
lable transition; as dLight fluorescence changes lag dopamine release 
by tens of milliseconds31 (Extended Data Fig. 1e), it is likely that the 
observed dopamine dip occurs at the end of the previous syllable, and 
the peak in dopamine occurs during expression of the subsequent syl-
lable (Fig. 1f,g). Consistent with this hypothesis, time-warping the dopa-
mine trace to accommodate differences in syllable duration revealed 
that on average, dopamine peaked near the middle of each syllable 
and decayed as the syllable ended, reminiscent of the ‘burst–pause’ 
firing pattern of dopamine neurons previously observed at movement 
initiations10,11,14,33 (Extended Data Fig. 4a). Nearly every syllable instance 

was accompanied by a positive dopamine transient, whose amplitude 
varied (Extended Data Fig. 4b–e).

DLS dopamine does not predict syllable identity
Syllable-specific dopamine waveforms exhibited relatively stereotyped 
shapes and amplitudes (when averaged either within or across mice 
and experiments), suggesting that dopamine waveforms predict either 
the identity of the associated syllable or the kinematics of movement 
associated with its expression (Fig. 1h and Extended Data Fig. 4c–h). 
However, kinematically similar syllables (for example, two rears) could 
exhibit very different average dLight waveforms, whereas kinemati-
cally different syllables (for example, turning and investigating) could 
exhibit similar average waveforms (Fig. 1i). Aggregating different syl-
lables into categories (such as rearing, grooming or diving) revealed 
that different categories of behaviour exhibited broadly overlapping 
average dopamine transient amplitudes (Extended Data Fig. 5a). Fur-
thermore, syllable-associated dopamine transient amplitudes only 
weakly correlated with the movements actually expressed during a 
given syllable (Fig 1i,j and Extended Data Fig. 5b).

Consistent with a potential dissociation between DLS dopamine 
and syllable-related kinematics, dopamine waveforms often changed 
shape and amplitude across different instances of the same syllable 
(Fig. 1k). This was true even for syllables known to correlate with high 
SNc and striatal activity such as contralateral turns20,34,35 (Extended 
Data Fig. 5c). Indeed, random forest classifiers were unable to predict 
which syllable was being expressed by the mouse at any moment based 
on the coincident dLight waveform amplitudes or shapes9 (Fig. 1l). 
Syllable-associated dopamine transient amplitudes were also unrelated 
to many other features of behaviour, including the rendition quality of 
each syllable, differences in speed between syllables, the biomechani-
cal difficulty of transitioning into a given syllable, the position of the 
mouse in the arena, and the specific identity of the preceding syllable 
(Extended Data Fig. 5d–i). Thus, although dopamine systematically 
fluctuates during the expression of behavioural syllables and syllables 
are associated on average with different dopamine waveform shapes 
and amplitudes, individual dopamine transients do not appear to reli-
ably encode information about syllable identity, kinematics or related 
features of syllable-associated behaviour.

Dopamine predicts future syllable use and sequencing
We therefore considered whether DLS dopamine transients instead 
have a more flexible role in specifying ongoing patterns of sylla-
ble usage, given that the usage of specific syllables and sequences  
varies during the course of each experiment (Extended Data Fig. 2e–g). 
Notably, dopamine transient amplitudes observed during sponta-
neous behaviour roughly matched those observed while mice con-
sumed an unexpected (and presumably rewarding) chocolate chip 
placed in the open field; this finding suggests that syllable-associated 
dopamine transients occurring during self-initiated behaviour, even 
in the absence of reward, may reinforce the expression of associated 
syllables (Fig. 2a).

Consistent with this hypothesis, those syllables that were on aver-
age associated with more DLS dopamine during a given experiment 
tended to be used more during that experiment; furthermore, variation 
in the average level of DLS dopamine associated with a given syllable 
across experiments predicted variation in the use of that same syllable 
(relative to others) across experiments (Fig. 2b). Dopamine transient 
amplitudes also predicted the near-term use of associated behavioural 
syllables: if a given instance of a syllable coincided with a relatively high 
amplitude dopamine transient, that syllable was then used more over 
the next several minutes, whereas if an instance of that same syllable 
coincided with a relatively low amplitude transient it was used less 
(Fig. 2c–g). The relationship between dopamine transient amplitudes 
and syllable usage was not due to autocorrelation in the dLight signal or 
to correlations between dopamine and velocity, both of which declined 
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Fig. 1 | Behaviour is associated with dopamine transients in DLS. a, dLight 
expression and fibre placement in DLS (Methods). b, The behavioural 
characterization pipeline using MoSeq (n = 14 mice for MoSeq, 216 experiments; 
Methods). c, Examples of measured kinematic variables. d, Aligned kinematic 
variables, MoSeq syllables and dLight fluorescence from an example 
experiment. e, Top, average correlation between kinematic variables and 
dLight transient rate. Bottom, correlations with dLight fluorescence. Coloured 
shading denotes bootstrapped s.e.m.; grey shading indicates the 95% shuffle 
confidence interval. Solid bars indicate statistical significance at P < 0.05 
(shuffle test; Methods). f, Top, average fluorescence (z-scored to shuffle; 
Extended Data Fig. 4c and Methods) aligned to movement initiation or syllable 
onsets (n = 100 shuffles). The average syllable-associated dLight transient 
exceeds that associated with movement initiation (P = 0.0006, z = 3, effect size 
r = 0.8, two-sided Wilcoxon signed-rank test; n = 14 averages). Bottom, derivative 
of top panel. Green shading represents the 95% bootstrap confidence interval; 
grey shading represents the 95% shuffle confidence interval. g, The distribution 
of all syllable-associated dLight peaks. Bottom, the cumulative distribution.  
h, Left, the distribution of syllable-associated dLight peaks for across all 
experiments. Right, z-scored average syllable-associated waveforms, sorted  
by peak fluorescence. The blue and red stars indicate the syllable waveforms 

shown in k. ***, Kruskal–Wallis H test on average syllable-associated 
fluorescence amplitudes: P < 10−25, H = 209.29, n = 518 mouse–syllable pairs. 
y-axis syllable sorting is shared across panels. i, Left, example syllables with 
different average (across experiments) waveforms (top) but similar velocity 
(bottom). Right, example syllables with similar waveforms (top) but different 
velocities (bottom). Shading represents the 95% confidence interval. j, Robust 
linear regression between syllable-associated dLight and velocity (top) or 
angular velocity (bottom; Methods). Each point is a sampled syllable instance 
(n = 28,000 points; n = 2,000 points per syllable drawn randomly from each 
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magnitudes. l, Left, held-out classifier performance predicting syllable 
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Fig. 2 | Endogenous dopamine transients predict average syllable use and 
sequence variability. a, The unexpected food reward protocol. Top right, 
average spontaneous versus food reward-associated transients (Methods). 
Shading represents bootstrap s.e.m. Bottom right, probability density 
function of dLight transient amplitudes. The dotted line indicates the threshold 
for detecting dLight transient peaks. b, Left, robust linear regression between 
syllable-associated dLight and average syllable counts per syllable (each dot is 
a syllable–mouse pair). Regression line and kernel density estimate are shown 
(r is Pearson correlation between held-out predictions and actual data). Right, 
the distribution of Pearson correlations using models fit to shuffled data 
compared with the observed correlation (blue line). Shading indicates the 95% 
bootstrap confidence interval. P-values estimated by one-sided shuffle test.  
c, Schematic depicting the hypothesis that dopamine predicts changes in 
future behaviour. Blue star indicates the syllable-associated dopamine peak.  
d, Left, average dLight waveforms for each fluorescence quartile at syllable 
onset for an example syllable–experiment pair. Right, log2 fold change 
compared to average syllable counts after example syllable onset computed 
over increasing bin sizes (in syllables) after onset. e, The average Pearson 
correlation between syllable-associated dLight and syllable counts or velocity, 
and the dLight signal autocorrelation, computed using a set of increasing bin 

sizes after syllable onset. Grey shading represents the shuffled 95% confidence 
interval. The two x-axes reflect time in syllables and approximated in seconds. 
Solid bars indicate statistical significance (P < 0.05, one-sided shuffle test).  
f, The distributions of exponential decay timescales (τ) for the correlations 
plotted in Fig. 2e (n = 1,000 bootstrap samples). In all box plots in this Article, 
the horizontal line represents the median, box edges delineate the first and 
third quartiles, and whiskers include the furthest data point within 1.5 times the 
interquartile range of the first or third quartile. g, Average cross-correlation 
between binned syllable counts and syllable-associated dLight fluorescence 
(from all mice and experiments) across lags (P < 0.001, one-sided shuffle test; 
the arrow indicates average peak lag, error is 68% confidence interval). Grey 
shading represents the shuffled 95% confidence interval. h, Overall correlation 
between syllable-associated dLight and syllable usage for syllables temporally 
adjacent to the index syllable. Grey shading represents the shuffled 95% 
confidence interval. The solid bar denotes statistical significance (P < 0.05, 
one-sided shuffle test). i, As in b, but for average entropy per syllable. Nat, 
natural unit of information. j, As in d, but for sequence entropy for an example 
syllable–experiment pair. k, As in e, but for sequence entropy. l, Fitted τ values 
for the correlation curve in k (n = 1,000 bootstrap samples).
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sharply after a few hundred milliseconds (Fig. 2e). Furthermore, the 
possible consequences of dopamine transients were largely restricted 
to the specific syllable with which they were associated, as the size of a 
given dopamine transient did not substantially correlate with the use 
of syllables neighbouring in time (Fig. 2h).

Each syllable expressed during spontaneous behaviour is associated 
with a specific set of possible subsequent syllables whose likelihoods 
vary substantially—some subsequent syllables are very likely, and 
therefore contribute to creating predictable (that is, more determin-
istic) behavioural sequences, whereas others are much less likely and 
therefore participate in less predictable (that is, more probabilistic) 
behavioural sequences (Extended Data Fig. 2d). Given that treat-
ment with dopaminergic agonists has been shown to increase the 
variability of ongoing behavioural sequences36–38, we tested whether 
syllable-associated dopamine transients can influence the choice of 
next expressed syllable. Examining the transition patterns between 
syllables revealed that mice tended to string together more deter-
ministic behavioural sequences when average syllable-associated 
dopamine was relatively low rather than high (Fig. 2i and Extended 
Data Fig. 6a). Furthermore, syllable-associated dopamine levels 
correlated with sequence predictability on a moment-to-moment 
basis: if a given instance of a syllable was associated with a relatively 
high amplitude dopamine transient, the mouse tended to make less 
predictable syllable choices over the next several seconds, whereas 
if that same syllable was associated with a relatively low amplitude 
transient, syllable sequences were more deterministic in the near 
future (Fig. 2j–l).

Both syllable usage and sequence variability were themselves cor-
related: those syllables that were used the most also tended to par-
ticipate in the most variable behavioural sequences (Extended Data 
Fig. 6a). However, syllable usage and sequence variability contributed 
independently to the ability of an encoding model to predict dopamine 
fluctuations during behaviour (Extended Data Fig. 6b–g; Methods). Our 
findings regarding syllable usage and sequence variability were specific 
to DLS, as dLight recordings in dorsomedial striatum (DMS) revealed 
less frequent dopamine transients that do not predict future syllable 
usage (Extended Data Fig. 7). However, dLight signals were effectively 
predicted by velocity in both DMS and DLS, consistent with previous 
findings that dopamine fluctuations in dorsal striatum correlate with 
movement25 (Extended Data Fig. 7e). Taken together, these findings 
suggest that moment-to-moment fluctuations in DLS dopamine influ-
ence the usage of associated behavioural syllables over timescales of 
minutes, and the choice of what to do next—and thus the predictability 
of behavioural sequences—on timescales of seconds.

Syllable-associated Opto-DA influences behaviour
To test directly whether syllable-associated DLS dopamine is suffi-
cient to drive increases in syllable usage and sequence variability—
and to determine whether fast dopamine fluctuations also influence 
movements per se—we built a platform that enables us to trigger an 
optogenetic pulse during the expression of a specific, targeted syl-
lable (Methods and Extended Data Fig. 8a–e). We used this approach 
to manipulate syllable-associated phasic dopamine levels (Opto-DA) 
by optically stimulating dopamine axons in the DLS in mice expressing 
channelrhodopsin-2 (ChR2) in all dopamine-releasing neurons in the 
midbrain (Fig. 3a,b; Methods). Our stimulation protocol was calibrated 
to mimic typical syllable-associated dLight amplitudes observed during 
spontaneous behaviour (Fig. 3c; Methods). We assessed spontaneous 
mouse behaviour before, during and after syllable-specific stimula-
tion; in each mouse we serially repeated this stimulation protocol for 
six different target syllables, which collectively exhibited substantial 
variability in syllable kinematics, usage and sequencing (Fig. 3d and 
Extended Data Fig. 9a–e). In nearly all instances, optogenetic stimula-
tion was limited to the targeted syllable and did not extend into subse-
quent syllables (Extended Data Fig. 9f).

Pairing syllable expression with Opto-DA rapidly increased the use 
of target syllables, evoking a stable increase in syllable usage per unit 
time (rather than continuously increasing the rate of syllable use) 
(Fig. 3e–g and Extended Data Fig. 9g,h). This increased usage persisted 
in experiments after stimulation was terminated, demonstrating that 
mice learned an association between dopamine stimulation and the 
specific targeted syllable (Fig. 3h). The reinforcing effects of Opto-DA 
were specific to the targeted syllable, as non-target syllables were not 
affected (Extended Data Figs. 8f and 10). Thus, Opto-DA is sufficient 
to reinforce the expression of targeted behavioural syllables in the 
absence of task structure or external sensory cues, suggesting that 
mice can recognize their own movements on a moment-to-moment 
basis and use this information to upregulate actions that are associated 
with exogenous dopamine39.

Consistent with the observed correlations between endogenous 
dopamine fluctuations and sequence variability, behavioural sequences 
observed immediately after Opto-DA stimulation were more unpre-
dictable than the those observed on catch trials (Fig. 3i). Of note, this 
increase in sequence variability was transient and only apparent during 
Opto-DA sessions; in the two subsequent sessions—after optogenetic 
stimulation had ceased but during which target syllable use remained 
upregulated—behavioural sequences surrounding the target syllable 
became more predictable, as the most likely transitions into and out of 
the target became even more likely (Fig. 3j,k). Thus Opto-DA increases 
sequence variability over seconds-long timescales, whereas sequence 
variability decreases over the longer timescales at which Opto-DA sup-
ports syllable reinforcement.

We also considered whether pairing Opto-DA with specific sylla-
bles changed the vigour with syllables were expressed, given prior 
experiments demonstrating that dopamine can control the speed 
(that is, vigour) of future movements by reinforcing the expression 
of fast (or slow) versions of a given movement, or the pitch of a note 
in a zebra finch’s song40–43. To address whether Opto-DA influences 
syllable-associated vigour, we tailored our Opto-DA experiment such 
that optogenetic stimulation was delivered only on those target syl-
lable instances in which syllable speed was in the top quartile of its 
overall distribution; this manipulation systematically increased the 
velocity with which the target syllable was later expressed (Extended 
Data Fig. 10d). Conversely, Opto-DA during the slowest quartile of the 
syllable velocity distribution caused future instances of the targeted 
syllable to slow down.

In contrast to its dynamic effects on syllable usage, sequence vari-
ability and syllable vigour, Opto-DA did not prompt switching from 
one syllable to the next, alter movement parameters associated with 
the targeted syllable, change movement during the stimulation experi-
ment in general, or induce a preference for a spatial location in the 
arena (Fig. 3l and Extended Data Fig. 10e–k). However, extending the 
duration of optogenetic stimulation to several seconds (which caused 
dLight signals that are of substantially higher amplitude than typically 
observed during spontaneous behaviour) caused mice to increase their 
velocity, consistent with previous reports demonstrating that strong 
perturbations of dopamine are sufficient to cause movements9,10,14,20 
(Fig. 3m and Extended Data Fig. 10l).

Dopamine–behaviour relationships predict learning
Only a fraction of mice successfully associated Opto-DA with targeted 
syllables, and among those that learned this association, the degree 
of learning varied (Fig. 3e). We wondered whether this distribution in 
learning reflected differences in the sensitivity of individual mice to 
dopamine (Fig. 4a). Consistent with this possibility, the ability of endog-
enous, syllable-associated dopamine transients to support syllable use 
and induce sequence variability was similar within an individual mouse 
but differed across mice (Fig. 4b). Furthermore, mice that were strongly 
influenced by endogenous dopamine fluctuations were also those that 
were particularly avid learners of the association between Opto-DA and 
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targeted syllables (Fig. 4c). These findings suggest that inter-mouse 
variability in Opto-DA learning reflects differences in the sensitivity 
of DLS to dopamine transients in general (as reflected by behaviour).

In addition, not all syllables were equally reinforceable in both the 
endogenous dopamine and Opto-DA experiments (Fig. 4d). There was 
no discernable relationship between the specific type of behaviour 
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encoded by each syllable (for example, rearing, running or grooming) 
and the degree of reinforcement by endogenous dopamine or Opto-DA 
(Fig. 4e). By contrast, the ability of a particular syllable to be reinforced 
by exogenous dopamine was well predicted by that syllable’s average 
endogenous dopamine transient amplitude: syllables that on average 
were associated with high amplitude dopamine transients during spon-
taneous behaviour were more easily reinforced by Opto-DA than those 
typically associated with low amplitude dopamine transients (Fig. 4f).

This observation suggests that the endogenous dopamine fluctua-
tions that naturally occur during expression of a targeted syllable sum 
together with the exogenous dopamine induced by Opto-DA to pro-
mote syllable usage. To test this idea, we built a dynamic decoding 

model that predicted moment-to-moment syllable expression on the 
basis of syllable-associated dopamine. In this model, syllable-associated 
dopamine was represented as the sum of two components: endogenous 
dopamine (that is, the observed syllable-associated dopamine observed 
at baseline) and a free parameter representing the extra dopamine 
afforded by Opto-DA. We then fit this model to data observed during 
catch trials in the Opto-DA experiments, in which optogenetic stimula-
tion during the target syllable was not provided (Methods). This addi-
tive model could reliably predict moment-to-moment syllable choices 
during the Opto-DA experiment (which included stimulation trials), but 
made less effective predictions when dopamine transients were shuf-
fled in time relative to syllables (Fig. 4g,h). In addition, the amount of 
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extra dopamine required for the model to accurately predict actual syl-
lable usage patterns closely matched the amount of dopamine elicited 
by Opto-DA in our calibration experiments (Figs. 3c and 4i). Together, 
these data support a model in which endogenous and exogenous DLS 
dopamine sum together to influence syllable expression, and provide 
a possible explanation for the differential reinforcement of syllables 
observed in the Opto-DA experiment.

An RL model reproduces spontaneous behaviour
The observation that both exogenously induced and endogenous fluc-
tuations in DLS dopamine levels drive changes in syllable usage and 
sequencing raises the surprising possibility that, during spontaneous 
exploration, mice are optimizing their behaviour—as they do in more 
structured tasks—to maximize the amount of total dopamine obtained 
during an experiment. If so, this would suggest that mice interpret 
fast DLS dopamine fluctuations during spontaneous behaviour as a 
teaching signal capable of shaping action choices.

To test this hypothesis, we built a reinforcement learning (RL) model 
in which an agent is trained—based on observed syllable sequences 
and dopamine transients—to predict the syllable choices expressed 
by actual mice during spontaneous behaviour (Fig. 5a). Whereas RL 
agents typically seek to maximize overall reward by optimizing their 
action choices in a particular state, here the RL agent seeks to maxi-
mize dopamine by optimizing the choice of which syllable to express 
next given its current syllable (Methods). We train this RL agent using 
standard Q-learning rules, which govern how syllable-associated dopa-
mine transients update the transition probabilities between syllables44, 
and formulated this model such that dopamine is both rewarding and 
injects transient variability into subsequent syllable choices.

Inspection revealed that after training the model converged on a 
syllable transition matrix similar to that emitted by actual mice explor-
ing an open field; comparing alternative formulations of this model 
revealed that maximal model performance depended on dopamine 
both reinforcing specific syllable transitions and briefly increasing the 
variability of syllable choices (Fig. 5b–d). These findings are consist-
ent with a model in which mice structure spontaneous behaviour to 
maximize DLS dopamine. We note that although our models assume 
that dopamine acts as a reward, there are alternative formulations 
under which dopamine acts as a reward-prediction error that are also 
consistent with our data (Fig. 5e; Methods). This caveat is important 
given that mice rapidly modify syllable usage in response to Opto-DA 
stimulation, preventing us from formally distinguishing between these 
possibilities.

Discussion
Goal-oriented behaviours are purposive and yield explicit rewards, 
whereas spontaneous behaviour can often appear to be aimless and 
inscrutable. And yet, even the behaviour of mice placed in a dark empty 
bucket exhibits remarkable structure. Here we show that this struc-
ture is governed by ongoing fast fluctuations in the neuromodulator 
dopamine. DLS dopamine transients both correlate with and causally 
influence how often each syllable is used and in what order, despite 
the absence of an explicit task or exogenous reward. The ability of a 
simple RL model, in which dopamine transients are substituted for 
the reward signal, to predict syllable choices suggests that dopamine 
acts as a moment-to-moment teaching signal, one that enables DLS to 
dynamically assemble behavioural sequences. Together, our observa-
tions identify a neural mechanism that actively shapes the trajectory 
of spontaneous behaviour as it unfolds, and propose an unexpected 
functional role for DLS dopamine during self-motivated action that 
is centred around choice and reinforcement rather than movement 
initiation or instantaneous kinematic control.

Recordings of dopamine neurons during spontaneous behaviour 
have revealed a variety of correlations with movement initiation, 
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The log likelihoods shown are for the best parameterization for each model  
type across 50 bootstraps of the dataset. On the basis of this relationship, we 
formulated models that treated dopamine transients as representing reward 
rather than reward-prediction error.
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speed and kinematics, and strong optogenetic stimulation of dopa-
mine neurons elicits movement, suggesting that dopamine may cause 
movements per se9,11,12,14,20,33. The failure of our calibrated optogenetic 
experiments to causally influence movement initiation or execution at 
the moment of stimulation argues that DLS dopamine organizes—rather 
than commands—movement by influencing the overall statistical struc-
ture of behaviour. Notably, DLS dopamine bidirectionally influences 
future syllable vigour, demonstrating that dopamine regulates both 
discrete (that is, which syllable to express next) and continuous (that 
is, how fast to express a particular syllable) aspects of spontaneous 
behaviour.

Our data suggest four broad, non-mutually exclusive models for 
how DLS dopamine transients may arise and thereby influence future 
behavioural choices. First, dopamine may represent an output of the 
motor system that enables it to modulate (and invigorate) the future 
expression of some syllables relative to others. In this model, DLS 
dopamine acts to implement a motor plan articulated by the cortex, 
thalamus and basal ganglia (all of which send projections to SNc45); our 
observations that syllable-associated dopamine causally influences 
both future syllable use and subsequent syllable choices is consistent 
with this model. Although the mechanisms that enable dopamine to 
briefly increase sequence variability are not yet clear, it is possible that 
this phenomenon relates to the ability of dopamine to increase SPN 
excitability, which may decrease the fidelity with which cortical inputs 
are transformed into ensemble SPN activity30,46.

Second, DLS dopamine may represent the output of a circuit that 
evaluates the content of spontaneous behaviour. Although dopamine 
has classically been thought to report reward-prediction errors—which 
by definition require the provision of reward—it has recently been 
argued that dopamine may also encode action-prediction errors47,48 
(APEs). APEs are proposed to occur as animals either execute or plan 
to execute a behaviour that is unexpected in a given context; in the set-
ting of spontaneous behaviour, an APE-like model would predict that 
DLS dopamine represents the comparison between the expressed (or 
soon-to-be-expressed) behavioural syllable and that which would have 
been expressed at a particular moment given an idealized transition 
matrix. Our finding (similar to that in ref. 9) that syllable-associated 
dopamine transients reflect the probability of the next expressed 
behavioural syllable—but convey no information about syllable iden-
tity—is also consistent with the proposed role of APEs in conveying 
information about action errors that is independent of the specific 
identity of the expressed behaviour.

Third, DLS DA may encode an error signal unrelated to APEs. Given 
that most syllables are probably associated with some degree of active 
sensory sampling, it is possible that DLS dopamine reflects the differ-
ence between expected and experienced sensory cues in the environ-
ment that are encountered during each syllable. Similarly, DLS dopamine 
might evaluate the actual quality of execution of each syllable (akin to 
performance prediction errors observed in birdsong49,50), although our 
data suggest that this is not the case. Finally, the brain may be misinter-
preting random fluctuations in DLS dopamine as a reward-like signal, 
thus inadvertently structuring behaviour; such stochastic fluctuations in 
cortical dopamine have recently been shown to support RL51. However, 
spontaneous behaviour in the open field evolves during our experiments 
with characteristic dynamics, arguing against this possibility. Future 
work will be required to arbitrate among these models.

We note that the midbrain dopamine system targets many brain 
areas with a diverse array of functions, and our experiments were 
deliberately designed to focus on the influence of dopamine on the 
DLS14. Given differences in their anatomical inputs and intrinsic time-
scales at which dopamine fluctuates52, it is likely that the relationship 
that we observe between DLS dopamine and syllable usage does not 
apply to the DMS or the ventral striatum, which vary in their functional 
roles in movement, motivation and value assignment24,53,54. Indeed, 
it is possible that phasic dopamine fluctuations in these areas are 

responsible for initiating new movements or controlling their kin-
ematics; alternatively, it is possible that tonic dopamine is broadly 
permissive but not causal for movements per se, as is suggested by the 
ability of l-DOPA therapy to revert movement deficits in humans with 
Parkinson’s disease55. The causal relationship between dopamine and 
movement may also depend on the specific task in which an animal 
is engaged and the extent of its training; the observation that dur-
ing goal-oriented tasks many individual dopamine neurons adopt 
task-related tuning to movements is consistent with this idea11,16,19. 
Note also that although both the endogenous dopamine and cali-
brated Opto-DA experiments argue that DLS dopamine is unrelated 
to movement initiation or kinematics (similar to observations in  
refs. 9–11,14,19), it is possible that our bulk measurements and manipu-
lations obscure a subtle role for specific SNc dopaminergic axons in 
controlling instantaneous movement.

Despite training, animals often fail to learn to perform structured 
tasks, with some animals, tasks or behaviours being more resistant to 
learning than others; understanding brain–behaviour relationships 
under these circumstances often requires considering only those 
animals whose behavioural responses exceeds some threshold for 
accuracy after training56. Although our experiments contain no overt 
goal or task structure, we also observe variability in Opto-DA learn-
ing, both across individual mice and across syllables. A substantial 
part of this variability can be explained by dopamine itself: mice that 
are more sensitive to endogenous dopamine fluctuations are better 
able to associate Opto-DA with targeted syllables, and syllables more 
effectively associated with Opto-DA are also associated with higher 
average endogenous dopamine transients. Our results also suggest that 
some mice are more sensitive to dopamine than others, despite being 
genetically identical and housed in similar conditions; further work 
is required to characterize the source of this inter-mouse variation.

Previous work has demonstrated that DLS SPNs encode informa-
tion about the current syllable and the sequence context in which 
that syllable is expressed27–29. This information is probably inherited 
from thalamic and cortical inputs to DLS57,58. The ability of mice to 
upregulate syllables in response to DLS dopamine axon stimulation 
demonstrates that mice can recognize and reinforce the movements 
of their own body in the absence of external sensory cues (such as the 
click commonly used as a sensory trigger during clicker training); this 
self-recognition is remarkably specific, as dopamine stimulation does 
not substantially reinforce syllables that are kinematically related to the 
target, or syllables that are adjacent in time. Our findings naturally lead 
to a hypothesis in which dopamine encourages the use of associated 
syllables by inducing short-term plasticity in sensorimotor inputs to 
DLS59. Notably, our dopamine stimulation coincides with only a fraction 
of each targeted syllable, yet syllables remain temporally intact and 
are coherently reinforced as a whole; this observation supports the 
speculation that syllables are natural units of spontaneous behaviour 
used by the brain to structure action.
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Methods

A list of reagents and resources is provided in Extended Data Table 1.

Ethical compliance
All experimental procedures were approved by the Harvard Medical 
School Institutional Animal Care and Use Committee (Protocol Number 
04930) and were performed in compliance with the ethical regulations 
of Harvard University as well as the Guide for Animal Care and Use of 
Laboratory Animals.

MoSeq
Overview. MoSeq (described previously in refs. 4,27,60) is an unsuper-
vised machine learning method that identifies brief, re-used behav-
ioural motifs that mice perform spontaneously. MoSeq takes as its input 
3D imaging data of mice and returns a set of behavioural ‘syllables’ that 
characterizes the expressed behaviour of those mice, and the statistics 
that govern the order in which those syllables were expressed in the 
experiment. MoSeq was used as it is originally described to explore 
relationships between endogenous DLS dopamine release and behav-
iour. This technology was further adapted to accommodate real-time 
syllable identification for closed-loop manipulations of neural activity 
as described below. Importantly, the underlying fitted autoregressive 
hidden Markov model (AR-HMM) for both the ‘offline’ and ‘online’ vari-
ants of MoSeq used in this study are the same, enabling comparisons 
of neural activity associated with syllables that were recognized and 
performed across multiple experiments.

Pre-processing. MoSeq consists of two essential workflows: one for 
pre-processing depth data and converting it into a low-dimensional 
time series that describes pose dynamics, and another for model-
ling the low-dimensional time-series data. As previously described, 
in order to focus on pose dynamics, raw depth frames were first 
background-subtracted to convert depth units from distance to height 
from the floor (in millimeters). Next, the location of the mouse was 
identified by finding the centroid of the contour with the largest area 
using the OpenCV findcontours function. An 80 × 80 pixel bounding 
box was drawn around the identified centroid, and the orientation was 
estimated using an ellipse fit (with a previously described correction for 
±180-degree ambiguities4,27). The mouse was rotated in the bounding 
box to face the right side. The 80 × 80 pixel depth video of the centred, 
oriented mouse was then used to estimate pose dynamics.

Size-normalizing deep network. To accommodate noise in online 
syllable estimation and other sources of variation in the depth images 
not due to changes in pose dynamics (for example, occluding objects  
such as fibre-optic cables), we designed a denoising convolution 
auto encoder. The network was designed using TensorFlow to process  
images in <33 ms, the time between frame captures on the Microsoft 
Kinect V261. On the encoder side, 4 layers of 2D convolutions (ReLu 
activation) followed by max pooling were used to downsample the 
80 × 80 images to 5 × 5. Another 4 layers of 2D convolutions with succes-
sive upsampling layers were used on the decoding side to reconstruct 
the 80 × 80 images (10,310,041 total parameters). Batch normaliza-
tion was used during training with a batch size of 128. In order to train 
the network, we used a size- and age-matched dataset (7–8 weeks of 
age). Mouse images were corrupted through rotation, position jitter, 
zooming in and out (that is, changing size), and superimposing depth 
images of fibre-optic cables. The network was fed corrupted mouse 
images as input and was trained to minimize the reconstruction loss 
of the original, corresponding uncorrupted mouse images (Extended 
Data Fig. 8a–c). The model was trained for 100 epochs using stochastic 
gradient descent with early stopping. Both online and offline variants 
of MoSeq included the size-normalizing network to ensure results 
were comparable.

Dimensionality reduction and AR-HMM training. In order to repre-
sent pose dynamics in a common space for all experiments, principal 
components and an AR-HMM time-series model were trained offline on 
a sample dataset of genotype- and age-matched mice. The parameters 
describing the principal components and AR-HMM model were saved. 
All depth videos acquired for this paper were then projected onto these 
same principal components for all experiments, whether they used the 
online or offline variant. As previously described, principal compo-
nents were estimated from cropped, oriented depth videos, and the 
AR-HMM was trained on the top 10 principal components. Since the 
denoising autoencoder was used for all experiments, mouse videos 
from the size-and-age-matched dataset were fed through the denoising 
autoencoder prior to principal component estimation.

Offline variant. In the offline variant, the Viterbi algorithm was used to 
estimate the most probable discrete latent state sequence according 
to the trained AR-HMM for each experiment post hoc. This variant was 
used to analyse all data except for the Opto-DA experiments shown in 
Figs. 3 and  4.

Online variant. In the online variant, syllable likelihoods were com-
puted and updated by computing the forward probabilities of the dis-
crete latent states for each frame as they arrived from the depth sensor.  
To avoid spurious syllable detections, the targeted syllable probability 
had to cross a user-defined threshold for three consecutive frames.

Histological verification
Mice were euthanized following completion of behavioural tests. Mice 
were first perfused with cold 1× PBS and subsequently with 4% para-
formaldehyde. Fifty-micrometre sections of extracted brain tissue were 
sliced on a Leica VT1000 vibratome. All slices were mounted on glass 
slides using Vectashield with DAPI (Vector Laboratories) and imaged 
with an Olympus VS120 Virtual Slide Microscope.

dLight validation and variant selection
dLight1.1 was selected to visualize dopamine release dynamics in the 
DLS owing to its rapid rise and decay times, comparatively lower dopa-
mine affinity (so as to not saturate binding), as well as its responsiveness 
over much of the physiological range of known DA concentrations in 
freely moving rodents31,62–64.

Since dopamine-free and dopamine-bound excitation spectra have 
yet to be reported for the dLight1.1 sensor, a series of in vitro experi-
ments was performed to identify an excitation wavelength whose 
fluorescence was stable and independent of dopamine levels, and 
which therefore could be used for post hoc motion artefact correc-
tion. Like GCaMP, dLight1.1 uses cpGFP as a chromophore, and vari-
ous generations of GCaMP have been shown to: (1) have an increase in 
ligand-free fluorescence when excited with 400 nm wavelengths and 
(2) have an isosbestic wavelength in the UV to blue region65–67. To test 
whether UV excitation could be a suitable reference wavelength for 
dLight1.1, HEK 293 cells (ATCC, cells were validated by ATCC via short 
tandem repeat analysis and were not tested for mycoplasma) were 
transfected with the dLight1.1 plasmid (Addgene 111067-AAV5) using 
Mirus TransIT-LT1 (MIR 2304). Cells were imaged using an Olympus 
BX51W I upright microscope and a LUMPlanFl/IR 60×/0.90W objective. 
Excitation light was delivered by an AURA light engine (Lumencor) at 
400 and 480 nm with 50 ms exposure time. Emission light was split with 
an FF395/495/610-Di01 dichroic mirror and bandpass filtered with an 
FF01-425/527/685 filter (all filter optics from Semrock). Images were 
collected with a CCD camera (IMAGO-QE, Thermo Fisher Scientific), at 
a rate of one frame every two seconds, alternating the excitation wave-
lengths in each frame. Image acquisition and analysis were performed 
using custom-built software written in MATLAB68 (Mathworks). Cells 
were segmented from maximum-projection fluorescence images using 
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Cellpose69. Cells with a diameter of less than 30 pixels were excluded 
from downstream analysis. Fluorescence traces were denoised using 
a hampel filter (window size 10 and threshold set to 2 median abso-
lute deviations from the median) and normalized to ΔF/F0. Cells were 
included if their maximum ΔF/F0 exceeded 5%. F0 was computed by 
fitting a bi-exponential function to the time series.

Stereotaxic surgery for open field photometric recordings. Eight- to 
ten-week-old C57BL/6J (n = 6 mice, The Jackson Laboratory stock no. 
000664) mice of either sex were anaesthetized using 1–2% isofluorane 
in oxygen, at a flow rate of 1 l min−1 for the duration of the procedure. 
AAV5.CAG.dLight1.1 (Addgene #111067, titre: 4.85 × 1012) was injected 
at a 1:2 dilution (either sterile PBS or sterile Ringer’s solution) into the 
DLS (AP 0.260; ML 2.550; DV −2.40), in a total volume of 400 nl per in-
jection. For all stereotaxic implants, AP and ML were zeroed relative to 
bregma, DV was zeroed relative to the pial surface, and coordinates are 
in units of mm. Injections were performed by a Nanoject II or a Nanoject 
III (Drummond) at a rate of 10 nl per 10 s, unilaterally in each mouse. 
A single 200-µm diameter, 0.37–0.57 NA fibre cannula was implanted 
200 µm above the injection site at the DLS (DV −2.20) for photom-
etry data collection. Finally, medical-grade titanium headbars (South 
Shore Manufacturing) were secured to the skull with cyanoacrylate 
glue (Loctite 454).

Mice were group-housed prior to stereotaxic surgery procedures, 
and following surgery were individually housed on a 12-hour dark–light 
cycle (09:00–21:00). All behavioural recordings were done between 
010:00 and 17:00.

Stereotaxic surgery for simultaneous photometric recordings 
and optogenetic stimulation. Six- to 12-week old DAT-IRES-cre mice 
(n = 10 mice, The Jackson Laboratory stock no. 006660) of either 
sex were injected with the same dLight1.1 virus described above into 
the right hemisphere DLS. Additionally, using the same previously 
described surgical procedure, 350 nl of AAV1.Syn.Flex.ChrimsonR.
tdTomato (UNC Vector Core, titre: 4.1 × 1012) was injected into the 
right hemisphere SNc (AP −3.160; ML 1.400; DV −4.200 from pia), in a 
1:2 dilution for calibration and stimulation experiments (see below). 
Mice were implanted unilaterally with a 200 µm core 0.37–0.57 NA 
fibre over the DLS for simultaneous stimulation and photometric 
data collection.

Two of the ten mice were used to calibrate optogenetic stimula-
tion (see ‘dLight calibration experiments’). The other 8 mice injected 
with dLight and ChrimsonR were also run through the 3 complete 
closed-loop experiments described in ‘Closed-loop DLS dopamine 
stimulation experiments’ (one experiment with 250 ms continuous 
wave (CW) stimulation, one with 2 s CW stimulation, and another with 
3 pulsed stimulation, 25 Hz frequency with 5 ms pulse width). Baseline 
data from these experiments were combined with mice described in 
‘Fibre Photometry for dLight recordings’, thus yielding a total of n = 14 
mice. Two of the 12 dLight only mice did not pass our quality control 
criteria for dLight recordings and were thus excluded from all dLight 
analysis (note that they were included in Extended Data Fig. 2a–b,d only, 
which strictly used behavioural data). Baseline data were considered 
data from the day prior to a stimulation day, or the day after with the 
targeted syllable excluded (yielding n = 378 experiments total). If the 
targeted syllable could not be reasonably excluded then data from the 
day after a stimulation day was excluded entirely.

dLight behaviour procedures
OFA experiments. Depth videos of mouse behaviour were acquired 
at 30 Hz using a Kinect 2 for Windows (Microsoft) using a custom user 
interface written in Python (similar to ref. 60) on a Linux computer. For 
all OFA experiments, except where noted, mice were placed in a circular 
open field (US Plastics 14317) in the dark for 30 min per experiment, 
for 2 experiments per day. As described previously, the open field was 

sanded and painted black with spray paint (Acryli-Quik Ultra Flat Black; 
132496) to eliminate reflective artefacts in the depth video.

Food reward experiments. To assess whether spontaneous dLight tran-
sients in the DLS were of appreciable magnitude compared to reward 
consumption-related transients, a series of separate dLight photometry 
experiments were run to measure reward consumption-related tran-
sient magnitudes (n = 6 mice). For two days prior to the experiment, 
mice were habituated to the open field arena for two 30-min experi-
ments on each day. On the morning of the experiment, to increase the 
salience of food reward, mice were habituated to the experimental room 
and food and water restricted for 3–5 h prior to beginning the experi-
ment. Mice were placed in the arena, and behaviour and photometry 
data were simultaneously acquired. Chocolate chips (Nestle Toll House 
Milk Chocolate) were divided into quarters and introduced into the 
arena at random intervals and locations decided by the experimenter 
(with an average of 1 chocolate chip piece every 4 min) for mice to freely 
consume for a total of 30 min. To identify reward consumption-related 
responses, a human observer indicated each moment in time during 
the experiment where mice began to consume the chocolate via post 
hoc inspection of the infrared video captured by the Kinect. Photom-
etry signal peaks for Fig. 2a were identified at the onset of consump-
tion. Mean spontaneous transient peak had observed magnitudes of 
2.12 ± 0.80 ΔF/F0 (z) (n = 5,247 transients). By comparison, mean reward 
consumption-associated transients had an approximate magnitude of 
2.36 ± 0.92 ΔF/F0 (z) (n = 10 transients).

Fibre photometry for dLight recordings. Photometry and behavioural 
data were collected simultaneously. A digital lock-in amplifier was 
implemented using a TDT RX8 digital signal processor as previously 
described27. A 470 nm (blue) LED and a 405nM (UV) LED (Mightex) 
were sinusoidally modulated at 161 Hz and 381 Hz, respectively (these 
frequencies were chosen to avoid harmonic cross-talk). Modulated exci-
tation light was passed through a three-colour fluorescence mini-cube 
(Doric Lenses FMC7_E1(400-410)_F1(420-450)_E2(460-490)_F2(500-
540)_E3(550-575)_F3(600-680)_S), then through a pigtailed rotary 
joint (Doric Lenses B300-0089, FRJ_1x1_PT_200/220/LWMJ-0.37_1.0m_
FCM_0.08m_FCM) and finally into a low-autofluorescence fibre-optic 
patch cord (Doric Lenses MFP_200/230/900-0.37_0.75m_FCM-MF1.25_
LAF or MFP_200/230/900-0.57_0.75m_FCM-MF1.25_LAF) connected 
to the optical implant in the freely moving mouse. Emission light was 
collected through the same patch cord, then passed back through the 
mini-cube. Light on the F2 port was bandpass filtered for green emission 
(500–540 nm) and sent to a silicon photomultiplier with an integrated 
transimpedance amplifier (SensL MiniSM-30035-X08). Voltages from 
the SensL unit were collected through the TDT Active X interface using 
24-bit analogue-to-digital convertors at >6 kHz, and voltage signals 
driving the UV and blue LEDs were also stored for offline analysis.

The output of the PMT was then demodulated into the components 
generated by the blue and UV LEDs. The voltage signal was multiplied 
by the two driving signals—corresponding to the green emission due 
separately to blue and UV LED excitation—and low-passed using a third 
order elliptic filter (max ripple: 0.1; stop attenuation: 40 dB; corner 
frequency: 8 Hz). The UV component was used a reference signal.

Synchronizing depth video and photometry. To align photometry and 
behavioural data, a custom IR led-based synchronization system was im-
plemented. Two sets of 3 IR (850 nm) LEDs (Mouser part # 720-SFH4550) 
were attached to the walls of the recording bucket and directed towards 
the Kinect depth sensor. The signal used to power the LEDs was digitally 
copied to the TDT. An Arduino was used to generate a sequence of pulses 
for each LED set. One LED set transitioned between on and off states 
every 2 s while the other transitioned into an on state randomly every 
2–5 s and remained in the on state for 1 s. The sequences of on and off 
states of each LED set were detected in the photometry data acquired 



with the TDT and IR videos captured by the Kinect. The timestamps 
of the sequences were aligned across each recording modality and 
photometry recordings were down sampled to 30 Hz to match the 
depth video sampling rate. This same mechanism was used to align 
photometry data to keypoints in Extended Data Fig. 3.

Photometry pre-processing. Demodulated photometry traces were 
normalized by first computing ΔF/F0. F0 was estimated by calculating 
the 10th percentile of the photometry amplitude using a 5-s sliding 
window to account for slow, correlated fluorescence changes between 
dLight and the UV reference channels. Both the dLight and reference 
channels were normalized using this procedure. Since the UV reference 
signal captures non-ligand-associated fluctuations in fluorescence 
(deriving from hemodynamics, pH changes, autofluorescence, motion 
artefact, mechanical shifts, and so on), a fit reference signal was sub-
tracted from the dLight channel (see ‘Photometry active referencing’). 
Finally, referenced dLight traces were z-scored using a 20-s sliding 
window with a single sample step size slid over the entire experiment to 
remove slow trends in ΔF/F0 amplitudes due to long timescale effects—
for example, photobleaching. Only experiments where the maximum 
percentage ΔF/F0 exceeded 1.5 and the dLight to reference correlation 
was below 0.6 were included for further analysis.

Photometry active referencing. In order to remove the effects of mo-
tion and mechanical artefacts from downstream analysis, a fit reference 
signal was subtracted from the demodulated dLight photometry trace 
as initially mentioned in ‘Photometry pre-processing’31,54 (Extended 
Data Fig. 1g). First, the reference signal was low-pass filtered with a 
second-order Butterworth filter with a 3 Hz corner frequency. Next, 
to account for differences in gain or DC offset, RANSAC ordinary least 
squares regression was used to find the slope and bias with which to 
transform the reference signal to minimize the difference between the 
reference and the dLight photometry traces. Finally, the transformed 
reference trace was subtracted from the dLight trace.

Capturing 3D keypoints. To capture 3D keypoints, mice were recorded 
in a multi-camera open field arena with transparent floor and walls. 
Near-infrared video recordings at 30 Hz were obtained from six cameras 
(Microsoft Azure Kinect; cameras were placed above, below and at four 
cardinal directions). Separate deep neural networks with an HRNet 
architecture were trained to detect keypoints in each view (top, bottom 
and side) using ~1,000 hand-labelled frames70. Frame-labelling was 
crowdsourced through a commercial service (Scale AI), and included 
the tail tip, tail base, three points along the spine, the ankle and toe of 
each hind limb, the forepaws, ears, nose and implant. After detection 
of 2D keypoints from each camera, 3D keypoint coordinates were tri-
angulated and then refined using GIMBAL—a model-based approach 
that leverages anatomical constraints and motion continuity71. GIMBAL 
requires learning an anatomical model and then applying the model to 
multi-camera behaviour recordings. For model fitting, we followed the 
approach described in ref. 71, using 50 pose states and excluding outlier 
poses using the EllipticEnvelope method from sklearn. For applying 
GIMBAL to behaviour recordings, we again followed71, setting the pa-
rameters obs_outlier_variance, obs_inlier_variance, and pos_dt_variance 
to 1e6, 10 and 10, respectively for all keypoints.

Computing 2D and 3D velocity. To compute 2D translational velocity, 
the centroid of the keypoints associated with the spine (approximat-
ing whole-body movement) was computed for the x and y planes (the 
z plane was disregarded). Then, the velocity was computed from the 
difference in position between every 2 frames and divided by 2 (to 
provide a smoother estimate of velocity). 3D translational velocity 
was computed the same way, except the z plane was included in the 
calculation. The average velocity of the keypoints associated with the 
forepaws were used to compute 3D forelimb velocity.

Partialing kinematic parameters from dLight. To compute the re-
lationship between dLight and forelimb velocity, other kinematic 
parameters known to be correlated with dLight were partialed out of 
the dLight fluorescence signal. Specifically, 2D velocity, 3D velocity 
and height were partialed out of dLight using linear regression. Then, 
the correlation between the partialed dLight signal and 3D forelimb 
velocity were computed and compared to 1,000 bootstrapped shuffles.

Movement initiation analyses. A changepoint detection algorithm was 
used to find moments where mice transitioned from periods of relative 
stillness to movement. To capture long bouts of movement, the velocity 
of the 2D centroid of the mouse was z-scored across each experiment 
and then smoothed with a 50-point (1.67s) boxcar window. To find 
sharp changes in velocity, the derivative of smoothed velocity trace 
was computed, and the result was raised to the third power. Peaks in 
this velocity changepoint score were discovered using SciPy’s findpeaks 
function with the following parameters: height 1, width 1, prominence 
1 so that consecutive data points around each peak were disregarded.

dLight time warping. To account for variability in syllable duration, 
dLight traces were time warped for Extended Data Fig. 4a. Here, all 
dLight traces were linearly interpolated using the numpy.interp func-
tion to a duration of 0.83 s, or 25 samples. Thus, syllables longer than 
0.83 s were linearly compressed, and syllables shorter than 0.83 s were 
linearly expanded. We obtained similar results time warping dLight 
traces to 0.4 s; thus, the duration of time warped instances did not 
affect interpretation of subsequent analyses.

dLight average waveform z-scoring. For dLight waveforms shown in 
Fig. 1f, top and bottom,  h,i,k and Extended Data Figs. 4c–g,  5c,f and 7c, 
first onset-aligned waveforms were z-scored using the mean and s.d. 
of fluorescence values from 10 s prior to 10 s after onset. Next, to ac-
count for differences in the number of syllable instances (trials) in each 
average, waveforms were additionally normalized by z-scoring relative 
to the mean and s.d. of 1,000 shuffle averages, where individual trials 
were circularly permuted prior to averaging.

Decoding syllable identity from dLight waveforms. To decode 
syllable identity from dLight waveforms or dLight peaks, a random 
forest classifier72 (cuRF = 1,000 trees, max depth = 1,000, number of 
bins = 128, with cross-validation on 5 folds of data) was trained to predict 
syllable and syllable group identity on held-out data (similar to ref. 27).  
Syllable groups were created by hierarchically clustering syllables 
based on their pairwise MoSeq distance (see below) and thresholds 
were increased with a distance cut-off in steps of 0.2. The inputs to the 
random forest classifier were either: (1) the maximum z-scored dLight 
value from syllable onset to 300 ms after syllable onset for each syllable 
instance or (2) dLight waveforms and their derivatives starting at sylla-
ble onset up to 300 ms into the future for individual syllable instances. 
Held-out accuracy was compared to 100 shuffles of syllable identity.

Decoding turning orientation from dLight waveforms. To decode 
turning orientation from dLight waveforms (Extended Data Fig. 5c), 
a linear support vector machine was trained to classify whether a par-
ticular syllable instance is a left- or rightward turning syllable using 
cross-validation on five folds of data. To sample the behaviour space 
of turning syllables, eight syllables with the largest angular velocities 
were chosen, four for each turning orientation. The model was fit to 
dLight waveforms and their derivatives starting at syllable onset up 
to 300 ms after onset for individual syllable instances and was tested 
on held-out data.

MoSeq distance. The MoSeq distance between two syllables was com-
puted as previously described27. In brief, the estimated autoregressive 
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matrices for each syllable were used to generate synthetic trajecto-
ries through principal component space (that is, in the space defined 
by the first ten principal components of the depth video). Then, the 
correlation distance between trajectories for all pairs of syllables 
were computed. Since the online and offline variants of MoSeq used  
the same autoregressive matrices, these distances are equivalent in 
the online and offline variants.

Analysing the relationship between dLight and syllable statistics 
within an experiment across syllables. The dLight fluorescence 
associated with syllable transitions was computed as the maximum 
z-scored dLight value from syllable onset to 300 ms after syllable onset 
for each syllable transition, to account for jitter in dopamine release or 
technical jitter in defining syllable changepoints. Throughout the text, 
we refer to syllable-associated waveform peak amplitudes in z-scored 
ΔF/F0 units as ‘syllable-associated dLight’. These dLight values were 
then averaged for each syllable and for each experiment. To assess the 
correlation between syllable-associated dLight and syllable counts, 
the dLight averages were z-scored across syllables in each experiment. 
These normalized dLight peaks represented whether a syllable had 
relatively higher or lower dLight during a given experiment. Finally, 
experiment-normalized dLight values along with syllable counts were 
then averaged across experiments for each mouse, thus leaving a value 
for each mouse and each syllable.

In order to measure the linear relationship between dLight peak 
values and syllable counts, a robust linear regression using the 
Huber regressor73 predicted average syllable counts from average 
dLight peaks. The regression model was evaluated using a fivefold 
cross-validation repeated 100 times. Reported correlation values in 
Figs. 1j and  2 were estimated over the held-out data. P-values were 
estimated by comparing held-out correlation values to those estimated 
from a linear model computed on shuffled data. To remove syllables 
that varied due to finite size effects, only syllables that occurred at 
least 100 times total across all experiments per mouse were included.

To compute syllable entropy (estimating the randomness of outgo-
ing transitions associated with each syllable), the outgoing transition 
probabilities associated with each syllable for each mouse were com-
puted by counting the number of occurrences a syllable transitions 
to all others within an experiment and expressing this as a probabil-
ity distribution. Next, the Shannon entropy was estimated over the 
outgoing transition probabilities for each syllable. Finally, the linear 
regression was estimated using the exact same procedure used for 
syllable counts.

Analysing the relationship between dLight and syllable statistics 
across experiments for each syllable. This series of analyses que-
ried a total of 379 experiments. To capture the correlation between 
syllable-associated dLight peaks and syllable-associated behavioural 
features (syllable frequency, syllable entropy) within syllables but 
across experiments, first, the maximum z-scored dLight amplitude 
from onset to 300 ms after syllable onset at each syllable transition 
was computed. These syllable-associated dLight peaks were averaged 
for each experiment and syllable. Then, the dLight peak averages for 
each syllable and mouse were z-scored separately across experiments. 
Additionally, to put variation of each syllable across experiments on 
the same scale, syllable frequency, and syllable entropy were also 
z-scored for each syllable and mouse across experiments (Fig. 2b,i, 
bottom). Next, to remove variability in the calculation, values were 
pooled across syllables for each experiment, thus leaving a value for 
each experiment and mouse. To remove syllables that varied due to 
finite size effects, first only syllables that occurred at least 50 times 
per session on average were considered for downstream analysis. 
Linear models (Huber regressors) were fit to the resulting average 
dLight peaks, syllable frequency, and syllable entropy and evaluated 
as described in the previous section.

Analysing the moment-to-moment relationship between dLight 
and syllable statistics within an experiment. This series of analyses 
queried a total of 760 syllable–experiment pairs. dLight peak values 
were estimated by taking the maximum dLight value from onset to 
300 ms after onset at each syllable transition. Velocity, syllable counts, 
and dLight peak values were averaged per syllable and per mouse over 
an expanding bin size; that is, velocity, syllable counts, and dLight 
peak values were estimated over the subsequent n syllables after the 
transition were dLight value was calculated, where n varied from 5 
syllables up to 400 (Fig. 2e). For sequence randomness, to avoid finite 
size effects, dLight values were binned into 20 equally spaced bins per 
syllable (Fig. 2k). Then, transition matrices were combined within each 
bin across all syllables per mouse and per time bin. Finally, Pearson 
correlation values were then calculated between dLight values and the 
behavioural features estimated at each bin size. Pearson coefficients 
were z-scored using the mean and s.d. from Pearson coefficients esti-
mated after shuffling dLight peak values.

Note that, in order to prevent the measurement from being influence 
by consistent non-stationarities in behaviour, these correlations were 
computed within each of the five time segments shown by dashed 
lines in Extended Data Fig. 2e. Then, per-segment correlations were 
averaged.

Time-constants associated with the correlation between dLight val-
ues and behavioural features over increasing bin sizes were estimated 
by fitting an exponential decay curve to the correlation values at each 
bin size using the SciPy’s curvefit function74. Decay functions were fit 
over 1,000 bootstrap resamples of the data; the depicted distributions 
are taus fit over each resample.

Analysing the cross-correlation between syllable-associated dLight 
and syllable usage. The dLight fluorescence associated with all in-
stances of a given syllable was binned across a three-minute window 
(chosen based upon the decay in Fig. 2f) and correlated with the use 
of that same syllable across a 3-min window, with the windows shifted 
the indicated amounts (x-axis). Correlation values (in Fig. 2g,h) were 
z-scored using the mean and s.d. from shuffles. P-values were estimated 
via shuffle test.

Analysing the relationship between syllable-associated dLight and 
syllable classes. Syllables were manually classified into 6 classes by 
hand-labelling crowd videos summarizing model output4,27,60. Then, 
syllable-associated dLight was averaged for all syllables within each 
class.

Encoding model predicting average dLight from behaviour. As with 
the linear regression analysis (previous section), dLight peaks were esti-
mated by taking the maximum z-scored dLight amplitude from syllable 
onset to 300 ms after onset. Behavioural features (entropy, velocity, 
and syllable counts) after each transition were computed across various 
bin sizes as described in ‘Analysing the relationship between dLight and 
syllable statistics within an experiment’. The bin sizes used were 5, 10, 
25, 50, 100, 200 300, 400, 800 and 1,600 syllables. Syllable frequency, 
syllable entropy and velocity were averaged for each experiment and 
syllable in each bin size. These syllable and experiment-wide average 
values were then z-scored separately for each mouse and then aver-
aged for each mouse and each syllable. In order to remove correlations 
between behavioural features they were whitened using zero-phase 
component analysis (ZCA) whitening. Whitened behavioural features 
were then fed to a Bayesian linear regression model to predict average 
dLight peak amplitudes per syllable and per mouse according to the 
following equation:

p y X β N β X( | , , σ ) = ( , σ )T2 2



where X is defined as features, β is regression coefficients, y is dLight 
peak values, σ is the s.d., and N is the normal distribution. A normal 
prior was placed on the regression coefficients, and an exponential 
prior was placed on the s.d. Samples from the posterior were drawn 
via the no u-turn sampler (NUTS) using NumPyro (n = 1,000 warmup 
samples, then n = 3,000 samples)75. To assess the temporal relation-
ship between behavioural features and dLight, a separate model was 
fit at each lag (here, features were whitened separately within each lag, 
Extended Data Fig. 6c). Overall model performance was quantified 
by feeding in features at their approximate best bin size to the model. 
For kinematic parameters and for entropy, this bin size (lag) was 10 
timesteps; for syllable counts, this bin size (lag) was 100 timesteps (in 
syllable time). Then, each feature was fed in separately to quantify the 
performance of feature subsets.

Encoding model predicting instantaneous dLight from behaviour. In 
order to predict instantaneous dLight amplitudes from syllable counts, 
syllable entropy, velocity (2D, angular and height velocity), and accel-
eration, a series of convolution kernels were estimated, each of which 
map from each behavioural feature to dLight amplitude. Mathemati-
cally, the model can be written as follows:

∑ ∑t t t f tdLight( ) = β ( − ′) ( )
f F t s

s

f
∈ ′=−2

2

where dLight (t) corresponds to the dLight trace at time step t, f(t) is the 
behavioural feature at time step t, and β is the weight of the convolu-
tion kernel. Kernel weights were optimized using a Huber loss via the 
Jax library76. That is to say, the dLight amplitude at each time sample is 
predicted by convolving each behavioural feature (frequency, entropy, 
velocity, and acceleration) with a convolution kernel and then summing 
the result across features. The model was trained and evaluated using 
twofold cross-validation by recording experiment, and the Pearson cor-
relation between predicted dLight amplitudes and actual amplitudes 
was assessed on held-out experiments. In order to remove the effects 
of high frequency noise on training and evaluation, the dLight traces 
were smoothed using a 60-sample (2-s) boxcar filter prior to training 
and evaluation.

Decoding model predicting behaviour from dLight. The decoding 
model was designed to capture the two main effects of dopamine on 
behavioural statistics—usage and sequencing. The goal of the decoding 
model is to predict the likelihood of a sequence of syllables given past 
dopamine. The model comprises two key features: (1) a component that 
scales syllable usage by past syllable-associated dopamine, and (2) a 
component that scales randomness of the next syllable choice by past 
global dopamine. This can be summed up with the following equation:
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where st is the syllable a mouse performs at time t during a behaviour 
experiment, dat is the peak dLight recorded for syllable st, τa and τb 
describe the timescale of the usage and choice randomness component 
respectively, αa and αb scale the usage and choice randomness compo-
nents respectively, and δ is the Dirac delta function (that is, one-hot 
encoding) that returns 1 when st − 1 = i and 0 otherwise.

The parameters αb, τa and τb were fixed using approximations of 
analysis of the behavioural data (Fig. 2), and only αa was learned by 
maximizing the likelihood of the function above given the sequence of 
syllables mice perform across a group of experiments and peak dLight 
measurements associated with the syllable sequence z-scored across 
each experiment. This was done via evaluating the likelihood of the 

function over multiple values of αa. τa (describing the effect of dopamine 
on future syllable usage/counts) was fixed at 100 syllable timesteps, 
and τb (describing the effect of dopamine on syllable sequence entropy) 
was fixed at 10 syllable timesteps. These values were approximated 
from the median τ values reported in Fig. 2.

To test model performance, data were split into 5 folds of training 
and test experiments and repeated 100 times using repeated K-fold 
cross-validation. We then computed the Pearson correlation between 
syllable counts from model simulations and actual syllable counts after 
smoothing with a 50-point rolling average. The one free parameter 
was fit using the training dataset and assessed on the test dataset. To 
avoid degradation in performance due to syllable sparsity, the top 
10 syllables were used. The model was compared to a suite of control 
models, each evaluated over the same folds. The dopamine phase shift 
model was evaluated on the same data, but with all dopamine traces 
circularly shifted by a random integer between 1 and 1,000, and the 
noise model was evaluated with dopamine traces replaced by numbers 
drawn from a unit variance random normal distribution (since the 
traces were z-scored). In order to determine the maximum possible 
performance, the per experiment number of counts per syllable was 
correlated with the across-experiment average. Here, the model per-
formed significantly better than controls. Median Pearson correlation 
between held-out predictions and observed data: actual model r = 0.20, 
phase shift control r = 0.04, noise model r = 0.04. Comparison between 
actual model and controls, P = 7 × 10−18, U = 2,500, f = 1, Mann–Whitney 
U test, n = 50 model restarts.

To test the hypothesis that endogenous and exogenous dopamine 
linearly combine to alter the future usage of single syllables of behav-
iour, the present decoding model was modified. Maximal correlations 
were identified between predicted and observed syllable usages when 
adding (or subtracting) extra dopamine (termed ‘extra DA’) to the 
syllable-associated dopamine amplitudes observed on catch trials 
(Fig. 4g–i). Model-based log likelihoods of held-out syllable choices 
from Opto-DA stimulation day experiments were then computed. Other 
versions of this model (shown in Fig. 4h) included: (1) a control model 
in which no ‘extra DA’ is added to the model (‘no offset’), (2) a control 
that uses a phase-shifted version of the dLight trace (‘random shift’), 
and (3) a model that uses random numbers from a normal distribution 
with mean and variance matched to the dLight signal (‘noise’).

dLight calibration experiments. In order to characterize the speed and 
magnitude of evoked dopamine transients in the open field, dLight tran-
sients were elicited using brief optogenetic stimulation of SNc axons in 
the DLS expressing ChrimsonR while mice freely explored an open field 
arena77. A number of stimulation parameters were tested, using vary-
ing light intensity, stimulation length, and whether the stimulus was 
delivered in as a single continuous-wave pulse or delivered as multiple 
rapid short pulses. A single, short (250 ms; roughly the timescale of syl-
lables), continuous stimulation pulse of red light at 10 mW (Opto Engine 
MRL-III-635; SKU: RD-635-00500-CWM-SD-03-LED-0) most effectively 
matched the amplitude and dynamics of endogenous dLight transients 
observed in the open field. The mean Opto-DA peak was measured at 
2.18 ± 0.85 ΔF/F0 (z), mean spontaneous peak = 2.23 ± 0.62 ΔF/F0 (z) and 
99th percentile spontaneous peak = 3.40 ΔF/F0 (z) Pulsed stimulation 
was also disfavoured as numerous studies have shown that pulsed 
stimulation can cause synchrony in neural and axonal networks that can 
evoke prolonged release78–80. Note that when excited with 635 nm light, 
the efficiency with which light evokes spiking in neurons expressing 
ChrimsonR is similar to efficiency with which blue light evokes spiking 
in neurons expressing ChR277.

Once a single 250 ms continuous pulse of 10 mW light was prelimi-
narily chosen as the desired optogenetic stimulus to evoke dopamine 
release from DLS dopamine axons, another round of open-loop stimu-
lation with these stimulation parameters was performed in the open 
field in two of the 10 total mice injected with dLight and ChrimsonR. 
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In these two mice, the intervals between stimulation times were drawn 
by randomly choosing an integer delay between 6 and 17 s for each 
stimulation. This range was chosen to guarantee each animal received 
at least 100 stimulations during an experiment. This enabled analysis 
of more stimulation trials with intended parameters to verify that the 
amplitude of evoked transients were within the same order of magni-
tude as spontaneously evoked transients (Fig. 3c).

DMS dLight recordings. As a series of control experiments to establish 
the specificity of DLS dopamine encodings, dLight recordings were 
performed in the DMS using the same techniques described above. 
dLight stereotactic injections in wild-type mice of either sex (C57BL/6J, 
n = 8) were performed at AP: 0.26, ML: 1.5, and DV: −2.2. Fibres for pho-
tometry (in C57BL/6J mice, n = 8, n = 64 recording experiments) were 
implanted in the manner described above at coordinates: AP: 0.26, ML: 
1.5, DV: −2.0. Open field behavioural recordings and encoding models 
were performed for these data exactly as described above.

Stereotaxic surgery for optogenetics. Eight- to fifteen-week-old 
DAT-IRES-cre::Ai32 mice resulting from the cross of DAT-IRES-cre 
mice (The Jackson Laboratory, 006660) and Ai32 mice (The Jack-
son Lab, 012569) of either sex were used. The double transgenic 
DAT-IRES-cre::Ai32 mouse line has previously been used to conduct 
specific dopaminergic neuron activation10,81,82. Similar surgical proce-
dures were used as described above, except two 200 µm 0.37 NA multi-
mode optical fibres were implanted bilaterally over DLS (AP 0.260; ML 
2.550; DV −2.300), in DAT-IRES-cre::Ai32 mice (n = 20). Control animals 
(DAT-IRES-cre mice, n = 12) of either sex were implanted bilaterally at the 
same coordinates, with 6 of these animals implanted in the nucleus ac-
cumbens (AP 1.300; ML 1.000; DV −4.000). These animals are collectively 
termed ‘no-opsin controls’ throughout the manuscript. Medical-grade 
titanium headbars were secured to the skull using cyanoacrylate. Optical 
stimulation experiments were then performed 2–3 weeks post-surgery.

Closed-loop stimulation behavioural paradigm. For two days prior to 
the closed-loop stimulation schedule (Fig. 3d), mice were habituated to 
the bucket for two 30-min experiments on each day. To test the change in 
statistics of specific syllables via syllable-triggered optogenetic stimula-
tion, experiments were performed in a three-day schedule for each of six 
chosen target syllables. On the first day, two 30-min experiments were 
run for each mouse to characterize baseline target syllable usage. On 
the second day, two 30-min ‘stimulation’ experiments were performed 
for each mouse. During these experiments blue light (470 nm, 10 mW, a 
single 250-ms continuous-wave pulse) was delivered on 75% of target syl-
lable detections. Stimulation was not conditioned on syllables occurring 
before the target. Finally, on the third day, baseline experiment record-
ings were repeated to assess syllable usage memory and usage decay 
after reinforcement. For half of the targeted syllables for each mouse 
(randomized across mice), the pre-stimulation baseline experiment is 
the same experiment as the post-stimulation baseline experiment for a 
different syllable (see Fig. 3d). A three-day cadence with multiple, short 
behavioural recording experiments per day was chosen to both minimize 
non-stationarities in syllable usage within an experiment, as well as to 
not expose the mice to the behavioural arena for more than one total 
hour per day. To control for order effects on changes in target syllable 
usages over time, animals were randomly split into two groups, each of 
which had a unique ordering of target syllables across the six stimula-
tion days of the three-week cadence. The time interval between the first 
experiment and the second experiment for the same mouse on each day 
(either recording or stimulation) was 195 min on average ±58 min (s.d.). 
Mice were euthanized following completion of behavioural tests, and 
histology was performed using procedures described above.

To assess the effect of increased dopamine release these experiments 
were repeated with 3-s pulsed stimulation (25 Hz, 5 ms pulse width) in 
n = 3 DAT-cre::Ai32 and n = 2 (DAT-IRES-cre) control animals.

Closed-loop velocity modulation experiments. DAT-IRES-cre::Ai32 
mice (n = 5) of either sex underwent 90-min recording and manipula-
tion experiments. For the first 30 min, we estimated the distribution 
of velocities for a specific target syllable. Then, for the next 30 min, 
optogenetic stimulation was triggered both when the syllable was 
expressed according to our closed-loop system and when the animal’s 
syllable-specific velocity exceeded the 75th percentile or went below 
the 25th percentile. Experiments were analysed only if the mouse re-
ceived at least 50 stimulations and they increased the usage of the target 
syllable on average relative to their average baseline (established via 
separate recording experiments with no stimulation).

Quantifying changes in target syllable counts. First, the number 
of times the targeted syllable was performed during a 30-s sliding 
window (non-overlapping) for each 30-min stimulation experiment 
was computed. Then, a cumulative sum was taken. To turn the result 
into an estimate of excess target counts, a cumulative sum was also 
computed from the morning and evening experiments from the most 
recent previous baseline day. Finally, the average of the morning and 
evening baseline estimates was averaged and subtracted off.

‘Learner’ mice were defined as mice whose average change in target 
counts above baseline across all syllables exceed the maximum average 
change in target counts exhibited by no-opsin control animals. These 
n = 9 animals were used for subsequent analyses of target kinematics 
and learning specificity (Extended Data Fig. 10).

Quantifying effects on syllables near the target in time. To assess 
whether syllables temporally adjacent to the target were reinforced as 
a result of optogenetic stimulation, syllables were identified that—on 
average—were near to the target in time. Specifically, the average time 
between all non-targeted syllables and the target was computed, along 
with their change in counts above baseline. Then, syllables were binned 
when they occurred on average relative to the target in syllable units in 
equally spaced bins from ten syllables before the target to ten syllables 
after. Finally, for each experiment, a weighted average of the change 
in counts above baseline for all syllables in each bin was computed, 
where a syllable’s weight was defined by its relative frequency in an 
experiment.

Quantifying effects on syllables whose velocity was similar to the 
target. To understand whether syllables with similar velocity profiles to 
the target were also reinforced, the average velocity from onset to offset 
for each syllable was computed and z-scored across instances within 
an experiment. Then, the average velocity of the target was subtracted 
from each syllable’s average velocity. Finally, the change in count above 
baseline for each syllable was binned by its target-velocity-difference.

Quantifying Opto-DA effects on movement parameters and se-
quence randomness. To quantify the effects of Opto-DA on move-
ment parameters and sequence randomness over short timescales, 
sequence entropy, velocity (2D, angular and height velocity) and 
acceleration were estimated in five-syllable-long non-overlapping 
bins starting from stimulation onset. This window was chosen to mini-
mize noise in downstream calculations while retaining reasonable 
time-resolution. To compensate for non-stationarities in behaviour 
across the experiments, mice, and targeted syllables, entropy, veloc-
ity and acceleration pre-stimulation-onset were subtracted from their 
values post-stimulation. Finally, these baseline-subtracted values were 
z-scored using the mean and s.d. estimated from catch trials.

Analysing the influence of dopamine on optogenetic 
reinforcement
Mice used to assess the influence of endogenous dopamine fluctua-
tions on optogenetic reinforcement. As described above, eight mice 



injected with dLight and ChrimsonR were also run through closed-loop 
reinforcement experiments. The reinforcement experiment run with 
250 ms 10mW CW stimulation enabled decoding analysis of how exog-
enous dopamine release altered usage of syllables during experiments 
in which ‘extra DA’ was added (Fig. 4g–i).

Predicting the amount of exogenously added dopamine during 
Opto-DA experiments using the decoding model. To predict the 
magnitude of exogenously evoked dLight fluorescence using the decod-
ing model, dLight fluorescence on each instance in which the mouse 
expressed the target syllable and received stimulation was replaced 
with the average dLight fluorescence observed for the target syllable 
on catch trials during which there was no optogenetic stimulation. Then 
an offset (denoted as ‘extra DA’) was added to each syllable instance in 
which the mouse received stimulation. The likelihood of the syllable 
sequences expressed during Opto-DA experiments was computed for 
a range of extra DA offsets (and hence a range of exogenously added 
dopamine). The model was evaluated using the exact same procedure 
described in ‘Decoding model predicting behaviour from dLight’, ex-
cept the repeated K-fold splits (5-fold split repeated 100 times) was 
performed over stimulation experiments. The ‘extra DA’ outputs of 
the model were compared to empirical photometric data collected 
from animals expressing dLight that underwent ChrimsonR-mediated 
closed-loop reinforcement (Fig. 4i).

Using the influence of endogenous dopamine to predict Opto-DA 
reinforcement. In order to assess whether the impact of dopamine 
at baseline could predict Opto-DA reinforcement, we used the cor-
relation between dopamine fluctuations and syllable statistics (usage 
and entropy) within an experiment. Specifically, we computed the cor-
relation between dLight levels and usage as outlined in ‘Analysing the 
moment-to-moment relationship between dLight and syllable statistics 
within an experiment’ (Fig. 2e,k), except correlations were assessed per 
mouse and per syllable. Values at each bin size were z-scored using the 
mean and s.d. correlations computed over shuffled data. Here, n = 100 
shuffles were used for the correlation with entropy for computational ef-
ficiency. To determine the modulation depth of these correlation curves 
for each mouse and syllable, we used the s.d. of the correlation values 
across bin sizes. This resulted in a value that reflected the short-term 
influence of dopamine on usage (Endo-DA count) and entropy (Endo-DA 
entropy) for all syllable–mouse pairs. Finally, these estimates were 
averaged per mouse for Fig. 4b,c, and per syllable for Fig. 4d. Then, 
the log2 fold change in target counts on stimulation days relative to 
baseline days was used as an estimate of Opto-DA learning. To mitigate 
mouse-to-mouse variability, the log2 fold change in target counts was 
normalized by computing the log2 fold change in target counts against 
all pairs of non-stimulation days per mouse. The mean and s.d. of this 
distribution was used to z-score Opto-DA learning per mouse.

Bayesian linear regression models were used in Fig. 4b,c. A normal 
prior was placed on the regression coefficients, and an exponential 
prior on the variance. Samples from the posterior were drawn via the 
no u-turn sampler (NUTS) using NumPyro (n = 1,000 warmup samples, 
n = 2,000 samples)75. Performance was assessed using leave-two-out 
cross-validation. The linear regression model presented in Fig. 4f uti-
lized a Huber regressor73. Performance of the Huber regressors was 
assessed using fivefold cross-validation repeated five times.

Applying RL models to open field behaviour
Reinforcement-only RL model. RL models have four key compo-
nents: a reward signal, a state, a state-dependent set of available ac-
tions, and a policy (which governs how actions are chosen). Here, a 
simple Q-learning agent with a softmax policy was designed to model 
mouse behaviour in the open field as an RL process over endogenous 
dopamine levels44. Our model was recast (specifically a Q-learning 
agent with a softmax policy) to use endogenous dopamine (that is, 

syllable-associated dLight) as a reward signal, behavioural syllables as 
states, and transitions between behavioural syllables as actions. Given 
a syllable at time t + 1, the dLight peak occurring during the syllable at 
time t is considered the ‘reward’. The Q-table for the model was initial-
ized with a uniform matrix with the diagonal set to 0, since by definition 
there are no self-transitions in our data. For every step of each simula-
tion, given the currently expressed syllable (that is, the state), the model 
samples possible future syllables (actions) based on the behavioural 
policy and the expected dLight transient magnitude (expected reward, 
specified by the Q-table) associated with each syllable transition. Then, 
the model selected actions according to the softmax equation
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where τ is the temperature. The model is fed 30-min experiments 
of actual data. Data was formatted as a sequence of states and 
syllable-associated dopamine. Given the current state, the model 
selects an action according to the softmax equation. To update the 
Q-table and simulate the effect of endogenous dopamine as reward, 
the syllable-associated dopamine is presented to the model as reward 
in a standard Q-learning equation. Specifically, the Q-table was then 
updated according to

Q s a Q s a α r γ Q s a Q s a( , ) ← ( , ) + [ + max ( , ) − ( , )]t t t t t a t t t+1 +1

where Q is the Q-table that defines the probability of action a while in 
state s, α is the learning rate, r is the reward associated with action a and 
state s (the dLight peak value at the transition between syllable a and 
syllable s), and γ is the discount factor. Performance was assessed by 
taking the Pearson correlation between the model’s resulting Q-table at 
the end of the simulation and the empirical transition matrix observed 
in the experimental data. Here, each row of the empirical transition 
matrix and the Q-table were separately z-scored prior to computing the 
Pearson correlation. Note that the learned Q-table is functionally equiva-
lent to a transition matrix in this formulation. To avoid degradation in 
performance due to syllable sparsity, the top 10 syllables were used.

Dynamic RL model. To account for the short-term effect of dopamine 
on sequence randomness, a dopamine-dependent term was added to 
the baseline model’s policy
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where temperature is now time-dependent and evolves according to,
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Here, τdecay corresponds to the time constant with which dopamine’s 
effect on temperature decays, τbaseline is the baseline temperature, ν is 
the amount by which temperature is increased if the r(t) goes above the 
threshold λ, and n is the number of timesteps after the threshold has 
been crossed. Experiments were split into training and test datasets 
via twofold cross-validation, and the training set was used to fit all free 
parameters. To compare the dynamic to the reinforcement-only model, 
v was set to 0—this turns off the temperature varying component of 
the dynamic model. Note that we observe qualitatively similar results 
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under an alternative formulation. Rather than feeding the model 30-min 
sessions of actual data, we allow the model to freely select actions, and 
reward was randomly drawn from dLight peaks associated with that 
action in actual data.

Reward-prediction error model variant. Models were fit using ob-
served dopamine magnitude as either the (1) reward term (see above) 
or (2) reward-prediction error term r γ Q s a Q s a[ + max ( , ) − ( , )]t a t t t+1 +1 . 
For each model type, a grid search was performed across values of α 
(learning rate), γ (discount factor, used in the reward model only), and 
temperature (randomness of the next action). Held-out log likelihood 
was computed for each fit and z-scored using the mean and variance 
of the held-out log likelihood from models fit to data shuffled between 
experiments (n = 10 shuffles). This comparison is only valid for our 
particular model formulation. There are alternative formulations for 
which dopamine acting as a reward-prediction error are consistent 
with our data.

Statistics
All hypothesis tests were non-parametric. Effect sizes for Mann–Whit-
ney U tests are presented as the common language effect size f. Cor-
relations were established as significant by comparing to n = 1,000 
shuffled correlations (referred to as the shuffle test throughout the 
manuscript). For shuffle test if all correlations exceeded the 1,000 
shuffles, the P-value is listed as P < 0.001 rather than P = 0. P-values 
were adjusted to account for multiple comparisons where appropriate 
using the Holm–Bonferonni stepdown procedure. Sample sizes were 
not pre-determined but are consistent with sample sizes typically used 
in the field. For examples using similar techniques see10,14. Blinding was 
not performed, but MoSeq-based analysis of behaviour was automated.

Plotting
Box plots (here and throughout) obey standard conventions: edges 
represent the first and third quartiles, whereas whiskers extend to 
include the furthest data point within 1.5 interquartile ranges of either 
the first or third quartile.

Software packages
In addition to analysis-specific packages cited in the relevant sec-
tions above, the following packages were used for analysis: NumPy83, 
Python84, Seaborn85, Matplotlib86 and Python 3 (ref. 87).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data that support the findings of the current study are available 
on Zenodo at https://doi.org/10.5281/zenodo.7274803.

Code availability
All code related to this study was developed in MATLAB or Python and  
is available at http://github.com/dattalab/dopamine-reinforces- 
spontaneous-behavior.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | dLight validation, photometry setup and motion 
artifact removal. a) Maximum projection epifluorescence images of HEK cells 
transfected with the dLight plasmid, and excited with either 480 nm blue (top) 
or 400 nm UV (bottom) light. Green emission (527 nm) was collected for both 
excitation wavelengths. Scale bar indicates 20 µm. Three separate experiments 
were performed with n = 28, n = 45, n = 42 regions of interest (ROIs) from the 
first, second, and third experiment respectively. b) Scatter plot of pixel 
fluorescence for each pixel location under both 400 nm and 480 nm excitation. 
A regression line was fit to the scatter plot (blue). The strength of the correlation 
demonstrates that both excitation wavelengths cause similar spatial patterns 
of dLight emission at 527 nm. c) Single cell dLight responses to perfused 
dopamine at 480 nm (left) or 400 nm (right) wavelengths. White dashed lines 
indicate time points where dopamine is washed into and out of the sample. 
Each row is an individual cell region of interest (ROI). d) Correlation in single 
cell dLight responses to perfused dopamine imaged with blue (x-axis) or UV 
light (y-axis). Each dot is an individual cell. Blue line indicates linear fit. The 
near-zero slope indicates that the UV-light-dependent green emission is almost 
entirely independent of dopamine concentration. e) Validation of dLight1.1 
response to optogenetic stimulation. To assess how quickly DLS dLight reports 
dopamine transients in vivo, SNc axons were optogenetically stimulated using 
ChrimsonR (whose excitation spectrum is separated from that of dLight) while 
dLight fluorescence was recorded. Left: schematic illustrating viral injection 
and implant procedure to simultaneously record dLight transients and 
optogenetically stimulate dopamine axons in DAT-Cre animals. dLight was 
injected into the right dorsolateral striatum, Cre-dependent ChrimsonR was 
injected into the right SNc, and an optical fiber was placed above the dLight 
injection site in the DLS (see Methods). Middle: coronal slice depicting the 
expression of both dLight and ChrimsonR in the striatum. Right: mean 
stimulation-evoked dLight fluorescence using ChrimsonR in dopaminergic 
axons originating from SNc. The green shaded region indicates bootstrap SEM. 
The gray shaded area indicates the 95% bootstrap confidence interval of the 

mean trace pre-stimulation. Red shading indicates the duration of optogenetic 
stimulation. dLight transients are resolvable starting 67 ms from stimulation 
onset, suggesting that dLight can report rapid dopamine dynamics via 
photometry in DLS (p = 0.005, U = 2610, f = 0.32, one-sided Mann-Whitney U 
test). f) Schematic describing the photometry recording setup. A blue and  
UV LED were modulated at different frequencies, and light delivered to the  
mouse via a single fiber optic cable. Green fluorescence was acquired using a 
photodetector and the blue (dLight) and UV (isosbestic) components were 
separated using lock-in amplification. g) Example data depicting a dLight trace 
along with the simultaneously recorded reference signal acquired during free 
behaviour. The UV, or reference signal, represents the contributions of motion 
and mechanical artifacts and other non-ligand dependent changes in sensor 
fluorescence. Since UV and blue excitation of dLight cannot be perfectly 
matched, a gain and bias term were fit to match the UV-excited emission to the 
blue-excited emission per previously published papers54; this fitting process 
maximizes the correlation between the UV and blue signals, enabling us to 
effectively subtract the reference signal from the dLight signal. Left: example 
fit showing the UV trace scaled to match the dLight trace (bottom) aligned to 
syllables (top). Right: histogram of r2 values between the photometry reference 
(UV component) and signal (dLight component), prior to fitting and subtracting 
the reference signal (top) and after fitting and subtracting the reference signal 
(bottom). Note that the baseline correlation between the reference and signal 
channels prior to subtraction is low. h) Top: the probability, on average, of 
observing a dopamine transient across all mice and experiments – defined as 
the ΔF/F0 trace crossing 1 standard deviation (computed per experiment) – at  
a given timepoint in the experiment. The probability was estimated in one 
minute bins. Shading indicates the 95% bootstrap confidence interval across 
per-mouse averages. Bottom: the maximum ΔF/F0 per 1 min time bin across  
all mice and experiments. As in the top plot, the average across all mice and 
experiments is shown, with shading indicating the 95% bootstrap confidence 
interval across per-mouse averages.



Extended Data Fig. 2 | MoSeq captures subsecond structure in spontaneous 
mouse behaviour. a) Distribution of syllable durations identified by MoSeq. 
The mean/median syllable duration was 566/400 ms +/− 636 ms SD. b) The 
average number of times each MoSeq-identified syllable is used during a 
30-minute experiment per mouse (n = 16 mice). Error bars indicate bootstrap 
95% confidence intervals across mice. c) Human-annotated descriptions of 
observed behavioural syllables. Left: semantic labels and “spinograms” of all 
behavioural syllables used more than 1% of the time, here to provide an illustration 
of movements associated with syllables. Each trace in the spinogram is an 
average height profile of the mouse computed by taking the pixel values along 
the center of the depth image across columns (note that MoSeq pre-processes 
depth images so that mice always face to the right of the cropped depth image). 
Each trace from left to right is the average of each frame of the behavioural 
syllable from the beginning to end. The distances between successive traces 
are proportional to the average x/y displacement from one frame to the next. 
Spinograms are color-coded by the average angular velocity of the syllable. 
Right: dendrogram computed using the pairwise MoSeq distance of all 
behavioural syllables (see Methods for a description of how MoSeq distances, 
which capture the average three-dimensional pose dynamics of each syllable, 
are computed). Spinograms are aligned to their corresponding leaf in the 
dendrogram. d) The average transition matrix visualized as a state map. Each 

circle corresponds to a syllable, and each arrow corresponds to the likelihood 
that there is a transition from one syllable to the next. Arrow width indicates 
transition probability. All transitions with a probability below 0.1 are removed 
for visual clarity in this statemap and in all subsequent statemaps. e) Kinematic 
parameters over time averaged across all experiments and mice, demonstrating 
non-stationarities in kinematics across each recording experiment. Lines 
indicate boundaries derived via k-means clustering of this data. Note that these 
boundaries were used for analysis shown in Fig. 2e and k. Specifically, in order 
to prevent non-stationarities from impacting within-experiment correlations, 
correlations were computed within each of these segments and then averaged. 
f) Heatmap of syllable counts computed over a six-minute sliding window for 
the 37 syllables used >1% of the time in an example experiment. Syllables are 
sorted by total usage in the experiment, with the most-used syllable at the top 
and least used on the bottom. The colors above each segment of the plot 
indicate the time intervals used to compute the transition matrices in Extended 
Data Fig. 2g. g) State maps computed for each colored section of the example 
experiment shown in Extended Data Fig. 2f, summarizing the transition 
statistics between behavioural syllables, and demonstrating that transitions 
are also non-stationary over each imaging experiment. Each node is a syllable, 
and each line represents the transition from one syllable to the next (whose 
width specifies the observed likelihood of each transition, per the legend).
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Extended Data Fig. 3 | Validating correlations to kinematic variables 
through multi-camera keypoint tracking. a) 15 keypoints were tracked in 3D 
using 6 infrared cameras (Azure Kinect, see Methods) positioned around the 
open field arena (n = 5 mice). A custom keypoint detection network was trained 
to identify all keypoints using manually labeled frames from each individual 
camera and integrated post-hoc with GIMBAL (see Methods). Top: schematic of 
keypoints positioned on the mouse. Bottom: example aligned frames from 
each of the 6 cameras with keypoints superimposed. b) Pearson correlation 
between 2D velocity and simultaneously recorded dLight at different timescales. 
2D velocity was estimated by computing the centroid of the spinal keypoints in 
the X and Y plane for each frame (shown as the dark blue keypoints in Extended 
Data Fig. 3a) and taking the difference between centroid positions across 
frames. As in Fig. 1e, 2D velocity is negatively correlated with dLight transient 

rates at short timescales, and positively correlated at long timescales. Top: 
Pearson correlations between 2D velocity and dLight transient rates across 
various time bins. Bottom: Pearson correlations between 2D velocity and 
average dLight fluorescence across various time bins. Shading represents 68% 
CI. c) Left: correlation between 2D velocity and dLight fluorescence after 
binning the data into 400ms time points (Pearson r = −0.16, p < .001 one-sided 
shuffle test). Each dot is a single 400ms time bin. Color represents point 
density, where brighter colors indicate denser points. Right: correlation 
between 3D forelimb velocity and dLight fluorescence after partialing out the 
relationship between dLight and other known kinematic parameters such as 
velocity and height (see Methods, Pearson r = −0.02, p < .001 one-sided shuffle 
test).



Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Variability of syllable-specific dLight waveforms 
across mice and experiments. a) Average dLight fluorescence aligned to 
syllable onset after time warping (traces were warped using linear interpolation 
from syllable onset to syllable offset, see Methods). b) Average probability of a 
syllable transition occurring near a dLight peak across all experiments. Peaks in 
the dLight trace were identified by first computing and z-scoring the derivative 
of the ΔF/F0 trace, and identifying peaks as values that exceeded the 90th (left), 
95th (middle), or 99th (right) percentile. We then plotted the probability that a 
syllable transition occurred given a dopamine peak. Gray shading indicates 
95% bootstrap confidence interval of the shuffle. For the 95th percentile 
threshold, a syllable transition is likeliest to occur 200 ms prior to the dLight 
peak. However, the estimated dLight peak lags actual dopamine release by 10s 
of milliseconds (Extended Data Fig. 1e)31. c) Left: schematic showing forms of 
variability in dLight fluorescence measurements across experiments. dLight 
fluorescence assessed via photometry often exhibits baseline shifts and shifts 
in fluorescence scaling that can be normalized across experiments by z-scoring 
the fluorescence trace. Z-scoring dLight per experiment will have the effect of 
shifting the distribution leftward (and thus producing negative values). Top 
right: distribution of all syllable-associated dLight peaks across all mice and all 
experiments (left), and corresponding cumulative distribution (right). Bottom 
right: distribution of all syllable-associated dLight peaks across all mice and all 
experiments after z-scoring fluorescence traces from each experiment (left), 
and corresponding cumulative distribution (right). d) Left: assessing variability 
of the average dLight transient amplitudes from mouse to mouse. Shown is the 
average dLight amplitude aligned to syllable transitions Z-scored relative to a 
shuffle as in Fig. 1f. The thick black line indicates the average across all mice, 
and per-mouse averages are shown as thin gray lines. Right: same as left except 
averages across experiments are shown; the thick black line indicates the 
overall average, and the thin gray lines are per-experiment averages. e) Pseudo-

color plots where each row depicts per-experiment average aligned to syllable 
onset for all experiments, grouped by mouse. Gray lines indicate boundaries 
between individual mice. f) Left: pseudo-color plot of all per-syllable dLight 
waveforms as in Fig. 1h, except shown for each mouse. The color bar on the left 
indicates which rows correspond to which syllables using the same sorting as 
Fig. 1h. Within a syllable-specific block, individual rows correspond to per-
mouse average dLight waveforms (n = 518 syllable/mouse pairs). Average 
dLight waveforms are z-scored to a shuffle. Right: the syllable-associated peak 
dLight value for each row, computed from each waveform between 0–300 ms 
from syllable onset. g) Average dLight fluorescence aligned to syllable onset 
for three example syllables shown in Extended Data Fig. 4e; the thick black line 
indicates the mean across all experiments, with the thin grey lines indicating 
averages from each mouse. h) The probability of observing a syllable-specific 
dLight peak value across every syllable instance and across all mice and 
experiments. Syllable-specific peak values are computed using the maximum 
value in a 300 ms window after syllable onset. Here, color values indicate the 
likelihood of observing a specific peak dLight amplitude from trial to trial 
without averaging. Here, dLight is z-scored within each experiment. Cyan bars 
show the location of the overall average for each syllable. Rows are sorted in the 
same order as Fig. 1h and Extended Data Fig. 4f. i) The probability of syllable-
specific average dLight peak values across experiments. Syllable-specific peak 
values are computed using the maximum value in a 300 ms window after 
syllable onset and averaged over the experiment, and thus do not correspond 
to the average waveform peaks in Extended Data Fig. 4e. Each row corresponds 
to a given syllable, and color values indicate the likelihood of observing a given 
peak dLight amplitude, on average, across experiments. Here, average dLight 
peaks are z-scored within each experiment. Cyan bars show the location of the 
overall average for each syllable. Rows are sorted in the same order as Fig. 1h 
and Extended Data Fig. 4f.



Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Querying different possible sources of variability in 
dLight waveforms. a) Average per-syllable dLight peaks associated with six 
behavioural categories (n = 7 dive syllables, 7 grooms, 9 pauses, 13 rears, 5 
scrunches, 16 walks). Each category is associated with multiple syllables and 
were identified through human annotation. b) Within-syllable changes in 
kinematic parameters do not covary with peak dLight. Box plots of kinematic 
parameters binned by syllable-associated peak dLight – shown are the first and 
fourth quartiles. Kinematic variables were averaged from syllable onset to 
syllable offset, and box plots show the distribution of per-instance averages. 
Box plots for two examples syllables are shown, an investigatory pause (top; 
N = 15245 syllable instances) and a scrunch (bottom; N = 11838 syllable instances). 
c) Left top: average dLight fluorescence waveforms for two syllables that 
contain a left- (contralateral) and right-ward (ipsilateral) turning component. 
Consistent with prior studies indicating that elevated dopamine and striatal 
activity is associated with contralateral turning, we find higher average dLight 
levels are associated with contralateral turning34,88. Fluorescence traces were 
z-scored to a circular shuffle. Left bottom: dLight waveforms broken out into 
quartiles based on syllable-associated fluorescence, as in Fig. 1k. Right: 
performance of a linear SVM classifier predicting individual syllable instances 
as left or right turns. Average observed accuracy was 51%, indicating 
substantial instance-by-instance variability (p < .001, one-sided shuffle test). 
d) Schematic illustrating the hypothesis that dopamine fluctuations may 
reflect performance prediction errors; here “performance error” is defined  
as the degree to which a given syllable instance differs from its mean 
implementation (see Methods). e) Top: schematic describing the linear model 
used to characterize whether syllable rendition quality compared to a template 
provides additional information about dLight fluorescence on top of the 
kinematic parameters described in Fig. 1e. Bottom: model coefficient for each 
kinematic parameter. Significant parameters are shaded black (p < .001 two-
sided shuffle test, n = 1000 bootstraps; error bars indicate 95% CI). f) Left half: 

Distribution of dLight waveforms across different velocity change bins. 
Syllable transitions were binned by the change in velocity from one syllable to 
the next. The peak magnitudes of dLight waveforms within each “velocity 
change” bin were then binned from lowest to highest; these binned dLight 
waveforms reveal the diversity of dLight transients associated with each 
behavioural transition type. Left: averaged velocity traces for each velocity 
change/dLight peak bin pair. Right: averaged dLight traces for each velocity 
change/dLight peak bin pair. Right half: Same as left half, but transitions were 
binned by their associated jerk, and waveform distributions are plotted as 
described above. Here inter-syllable jerk is used as a surrogate for the 
biomechanical difficulty mice are likely to experience as they transition across 
syllables. g) Syllable-associated dopamine peaks do not contain information 
about position in the open field. For each syllable, peak dLight and velocity 
were binned into ten equally spaced bins, and the animal’s 2D centroid position 
in the arena was binned into four equally spaced bins. Then, mutual information 
was computed between the dopamine and the position bin. Shown are 2D 
histograms of mouse position for the highest and lowest bin for dLight peaks 
(left) and velocity (right) for an example syllable. h) Per-syllable mutual 
information between dLight per-syllable average peaks and position in the 
open field (p = .107, n = 57 syllables, one-sided test). The p-value was computed 
by comparing the average mutual information across all syllables against the 
mutual information computed on shuffled data. i) Specific syllable transitions 
do not contain information about the likelihood of a dopamine transient 
(p = .165, n = 14 mice, one-sided test). Here, we estimated the average likelihood 
of syllable-associated dLight peak crossing the 95th percentile for all syllable 
transitions. These likelihoods were used to build a 2D matrix, where cell i, j was 
the likelihood of a transient for the transition from syllable i to syllable j. Finally, 
we computed the mutual information of this matrix per-mouse, and estimated 
p-values by comparing with the mutual information computed on shuffled 
data.



Extended Data Fig. 6 | Dopamine predicts future syllable choices, and 
behaviour predicts prior dopamine dynamics. a) Correlation matrix 
between dLight associated with a given syllable, entropy (which summarizes 
the variability of the subsequent syllable choice), syllable counts (for the 
syllable associated with dLight), and the dLight associated with the next 
syllable. Here, each feature was averaged per syllable/mouse pair, and the 
Pearson correlation was computed between feature averages (n = 760 syllable/
mouse pairs). Syllable-associated dLight, entropy and syllable counts are all 
substantially correlated with each other, as described in the manuscript. Note 
that entropy (here defined as outbound entropy, the degree to which the 
subsequent syllable choice is predictable or variable) does not correlate  
with the amount of dLight on the subsequent syllable. This observation  
means that the amount of dopamine associated with a given syllable does not 
reflect whether that specific syllable was a more or less variable choice, given 
the preceding syllable; this contrasts with the correlation between syllable- 
associated dLight and outbound entropy, which demonstrates that the amount 
of dopamine associated with a given syllable predicts whether the next syllable 
choice will be deterministic or variable. b) Left: schematic for an encoding 
model which uses future behaviour to predict average syllable-associated 
dLight in the past (n = 760 syllable/mouse pairs, see Methods). Middle: plot of 
model predictions against actual dLight peak values on held-out data (5-fold 
cross-validation repeated 50 times). This model combines each feature at its 
best lag, lag = 10 syllables for velocity, 100 syllables for counts, and 10 syllables 
for entropy. Each point is a syllable/mouse pair, and the color of each point 
represents a kernel density estimate. Regression line is shown in blue. Right: 
the correlation between predicted syllable-associated dLight values and actual 
dLight values compared to n = 1000 shuffles (average Pearson correlation of 
held-out mouse/syllable pairs r = 0.46, p < .001; p-values for correlations 
throughout this figure were estimated by comparing observed correlation  
to Pearson correlation from shuffled data via a one-sided test). Performance 

using kinematic parameters only, r = 0.39, counts and entropy only r = 0.22, 
both models p < .001 one-sided shuffle test. To evaluate model performance 
using feature subsets, we refit the model from scratch for each group of 
features using cross validation. c) Median beta coefficients of the encoding 
model shown in Extended Data Fig. 6b at increasing bin sizes. Shaded region 
indicates 95% confidence intervals for each behavioural variable across 
Markov-chain Monte Carlo samples. d) Schematic of a linear encoding model 
predicting instantaneous dLight fluorescence from future behaviour. In this 
model each behavioural variable is convolved with a learned kernel, with the 
result of each convolution summed to produce a predicted dLight trace 
(see Methods). e) Top: correlation between model predictions and true dLight 
fluorescence values (median correlation over all held-out experiments using  
all features r = 0.28, in black is model performance with experiment-permuted 
dLight traces, p < .001 shuffle test, n = 211 experiments). Bottom: model 
performance quantified as held-out correlation (2-fold cross-validation, 
Pearson r) shown using all behavioural variables (“all”), variables related to 
behavioural structure (syllable counts or transition entropy, “syllable only”),  
or kinematic parameters (velocity, angular velocity, height velocity, or 
acceleration, “kinematic only”). Held-out correlation was evaluated for each 
experiment (n = 211). To evaluate model performance using feature subsets, we 
refit the model for each group of features (median r over held-out experiments 
for kinematic parameters 0.23; syllable-related measures 0.16; all correlations 
p < .001, one-sided shuffle test). f) Representative kernels learned by the fitting 
procedure (with cross-validation, see Methods) for each behavioural variable. 
Left: kernels for all behavioural variables with the same scaling. Right: kernels 
y-axes are re-scaled according to the scalebar shown on the left to visualize 
temporal dynamics of each kernel. Error bars indicate 99% bootstrap 
confidence interval. g) Model prediction of instantaneous dLight fluorescence 
for two example held-out experiments. Green indicates observed dLight 
fluctuations over time, orange indicates model-predicted fluctuations.
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Extended Data Fig. 7 | DMS dopamine does not correlate with syllable usage 
or entropy. a) Average dopamine transient waveform for DMS and DLS. The 
average dopamine transient was computed for each DMS (n = 8) and DLS (n = 14) 
mouse, and then the per-mouse means were averaged to form the grand 
average. Shaded region indicates the 95% bootstrap confidence interval. As in 
Extended Data Fig. 1h, a transient is defined as when the dLight trace crosses 1 
standard deviation above the mean. Note that DMS and DLS data are z-scored 
independently of each other. b) Summary statistics of DLS and DMS dopamine 
transients. Values were averaged per-mouse, thus leaving n = 8 for DMS and 
n = 14 for DLS. Box plots summarize per-mouse averages of each statistic.  
* Indicates p < .05, ** indicates p < .01, two-sided Mann-Whitney U test. Area 
under the curve, p = .052, U = 27, f=.24.; time to peak, p = .0001, U = 4, f = .036; 
Full-width at half-maximum p = .017, U = 16, f = .14; transient rate p = .017, U = 97, 
f = .87. c) As in Fig. 1f, average dorsomedial striatum (DMS) dLight fluorescence 
aligned to all syllable transitions (green) or movement initiations (orange) and 
z-scored to shuffle (n = 100 shuffles, see Methods; DLS shown for reference in 
blue). Shaded regions represent bootstrap SEM. d) Peak dLight values from 
per-mouse average waveforms aligned to either syllable transitions or 

movement initiations (n = 14 DLS mice, n = 8 DMS mice). *** Indicates p < .01, 
two-sided Mann-Whitney U test (movement initiations, p = 2.5e-5, U = 110, 
f = .98; syllables, p = 4.4e-5, U = 109, f = .97). e) Encoding model performance for 
dLight peak values (see Extended Data Fig. 6b, Methods) recorded in DLS (left) 
and in DMS (right) using different feature subsets. Each point is the average 
per-mouse heldout performance (n = 14 DLS mice, n = 8 DMS mice). ** Indicates 
p < .01, two-sided Mann-Whitney U test. Comparison of syllable feature subsets 
between DLS and DMS: entropy and syllable counts p = .002, U = 102, f = 0.91; 
velocity p = 0.87, U = 59, f = 0.53; all p = 0.25, U = 79, f = 0.71. f) Correlation for all 
kinematic parameters for DLS (n = 14 mice) and DMS (n = 8 mice) photometry 
mice. Here we computed the correlation between dLight and kinematic 
parameters and a variety of bin sizes as in Fig. 1e. The maximum correlation 
across all bin sizes per mouse is shown. *, p < .05 and **, p < .01, two-sided 
Mann-Whitney U test. Angular velocity comparison for dLight transient rate, 
p = 0.006, U = 9, f = 0.08; velocity comparison for dLight transient rate, p = .03, 
U = 15, f = 0.13; velocity comparison for dLight average, p = 0.026, U = 14, 
f = 0.125.



Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Closed-loop Motion Sequencing. a) Schematic of the 
closed-loop MoSeq pipeline. A deep neural network (a convolutional neural net 
(CNN)), structured as a denoising autoencoder, was used to remove small 
artifacts related to photometric or optogenetic fiber optics. The network takes 
a depth image of a mouse to 1) remove artifacts like cables, 2) eliminate rotation 
or translation jitter, and 3) resize the mouse to a standard size for closed loop 
MoSeq. This network was trained to minimize the reconstruction loss of 
images of mice after those images were corrupted through artificial rotation, 
rescaling or imposition of noise (see Methods). After being passed through this 
denoising network, depth frames were dimensionally reduced by applying 
principal components analysis, where principal components were estimated 
using a size-and-age-matched “clean” dataset. Finally, the principal component 
scores were modeled using an autoregressive hidden Markov model (AR-
HMM). For offline syllable detection, discrete latent states (i.e. behavioural 
syllables) were estimated using the Viterbi algorithm. For online syllable 
detection, the probabilities of discrete latent states were estimated using a 
forward pass estimated on a rolling basis (see Methods). b) Average pixel-wise 
or syllable label corruption plotted as a function of mouse depth image 
distortion via either a change in size or a change in rotation. Top: the impact  
of image corruption on syllable labels either with (orange) or without (blue) 
applying the CNN. Mouse depth images were corrupted through applying 
either a zoom factor (left, >1 indicates enlargement and <1 shrinking) or a 
rotation (right, in degrees), and syllable labels were compared between the 
corrupted and uncorrupted image using the Viterbi algorithm. Here, depth 
videos from a size-and-age-matched dataset were fed to the CNN after image 
scaling or rotation. This analysis reveals that the CNN effectively mitigates the 

effects of scale and rotation on the depth image. Bottom: the impact of image 
corruption measuring using the mean-squared-error (MSE) between the 
original depth image and the corrupted depth image. c) Similar to b, but 
measuring the robustness of depth images and syllable labels to jittering the 
mouse’s position in X or Y (in units of pixels). Top: impact of position jitter on 
syllable labels without (left) or with (right) applying the CNN. Bottom: impact 
of position jitter measured using the MSE between the original depth image 
and the corrupted depth image without (left) or with (right) applying the CNN. 
d) Top: histogram of round-trip latency between receiving a depth frame and 
running all computations associated with the closed-loop pipeline (CNN, 
image processing, and AR-HMM likelihood estimation). Red line indicates the 
median syllable duration. Bottom: prediction time relative to the onset of the 
six syllables targeted for optogenetic reinforcement in this work. e) Degree  
to which the online system for syllable classification used during opto-DA 
stimulation confused the targeted syllable with other syllables. Shown is the 
row-normalized confusion matrix comparing online syllable calls (from actual 
experiments) against offline classification using traditional MoSeq (as in the 
remainder of the paper). The last column is the sum total of false alarms across 
all syllables that were not targeted for closed-loop reinforcement. f) Opto-DA 
learning is minimally impacted by false positives. Here, we show per-mouse 
average opto-DA learning for the targeted syllable (leftmost point of each plot), 
along with per-mouse averages of the 10 off-target syllables with the most false 
positives, ranked from highest to lowest (1 to 10). Off-target learning was 
smoothed with a 3-point rolling average. Results from the first stimulation 
experiment are shown on top, and results from the second experiment are 
shown on the bottom.



Extended Data Fig. 9 | Closed-loop reinforcement of targeted syllables.  
a) Cartoons depicting the mouse pose dynamics expressed during the six 
syllables targeted for optogenetic reinforcement. b) Per-mouse average usage 
plot depicting the top 40 most used syllables identified by closed-loop MoSeq 
(used >1% of the time), rank-ordered by baseline usage, with target syllables are 
outlined and highlighted. Syllable usages were computed in counts for each 
mouse-experiment pair, and then averaged across these pairs for each syllable 
(n = 32 mice total, n = 20 opto-DA mice and n = 12 controls). Target syllables  
are labeled in red. Error bars represent 95% bootstrapped CI. c) Relationship 
between baseline syllable usage and syllable expression duration in no-opsin 
controls. Each point is a syllable, whose durations and usage counts were 
averaged across mouse-experiment pairs, and subsequently normalized 
across pairs (n = 40 syllables, Spearman r = −0.08, p = 0.61). Target syllables are 
labeled in red. Error bars represent SEM. d) Probability distributions for the 
duration of each target syllable across all behavioural experiments and mice. 
Mean, median, and mode values (in seconds) are reported. e) Circular state map 
computed for the full repertoire of behaviours the closed-loop system was able 
to faithfully detect. Each node is a syllable, and each line represents the 

transition from one syllable to the next (whose width specifies the observed 
likelihood of each transition). Each syllable targeted for optogenetic 
reinforcement is shown in red; each such node is associated with a different set 
of sequences in which it participates. f) Probability distributions describing 
the relative timing of optogenetic stimulation offset and the offset of the 
syllable instance for all target syllables. Note that optogenetic stimulation 
across targets rarely extends into the subsequent syllable. g) Cumulative target 
syllable counts over time. Lines are averaged over the six target syllables for 
each mouse. Dark green indicates “learners” that used the targeted syllables 
significantly above controls (n = 9/20, learners are defined as mice whose 
average cumulative change in counts across all syllables exceeds all control 
mice, see Methods). h) Timecourse of target syllable use during the first 
thirteen minutes of opto-DA. Depicted here is the usage of the target syllable 
(in counts) above baseline in a 30-second long non-overlapping bins. Mice 
quickly learn the contingency between expressing the targeted syllable and 
opto-DA, and then perform the target syllable at a near-constant rate above 
baseline.
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Extended Data Fig. 10 | See next page for caption.



Extended Data Fig. 10 | Reinforcement of the target syllable is 
spatiotemporally precise. a) Top: schematic describing the hypothesis that 
optogenetically-evoked DA release influences syllable counts of temporally-
adjacent non-targeted syllables. Bottom: weighted average of syllable counts 
over baseline for non-targeted syllables for the first (left) and second (right) 
stimulation experiments in learner mice (n = 9). Green and gray shading 
indicates 95% bootstrap CI for weighted average and time-shuffled data, 
respectively (n = 1000 shuffles, p > 0.05 for all comparisons, two-sided Mann-
Whitney U test). b) Top: schematic describing the hypothesis that opto-DA 
reinforces similar-velocity syllables to the target. Bottom: average syllable 
counts over baseline for similar-velocity syllables for stimulation experiment  
1 (left) and 2 (right) in learner mice. Green and gray shading indicates 95% 
bootstrap CI for weighted average and time-shuffled data, respectively 
(n = 1000 shuffles, p > 0.05 for all comparisons, two-sided Mann-Whitney U 
test). c) Relative usage change (in syllable counts) of syllables of varying 
behavioural similarity to the target syllable, with syllables grouped into 10 bins 
given their relative similarity to the target. Shown are per-mouse-and-bin 
medians. Top: learner mice. Bottom: no-opsin controls. ** Indicates a 
significant difference between opto-DA learners (n = 9) and control mice 
(n = 12) (p = 0.006, U = 103, f = 0.95 two-sided Mann-Whitney U test between 
median change in counts per learner mouse), all other comparisons p > 0.05.  
d) Left: schematic of velocity modulation experiment (see Methods). Right: 
mouse/experiment averages of the targeted syllable’s velocity binned by 
stimulation number (for velocity, p = 0.013, u = 167, f = 0.77; n = 18 up experiments 
and n = 12 down experiments, two-sided Mann-Whitney U test). Error bars 
indicate bootstrap SEM. e) Per-mouse and per-target average target syllable 
duration, comparing learner mice to controls. Shown is the average duration 
on stim trials relative to catch trials (stim – catch); no statistically significant 
differences in duration distributions were identified (p = .98 for both sessions; 
session one U = 1995 and f = .52; session two U = 1804 and f = .46; two-sided 
Mann-Whitney U test, n = 144 mouse/target control pairs, n = 107 mouse/target 
learner pairs). f) Kinematic parameters associated with each target syllable 
were not altered as a result of opto-DA. Top: a linear classifier (linear 
discriminant analysis) was trained to use syllable-associated pose dynamics 
(measured using the mean and variance of the 10 principal components 
derived from the mouse depth data, see Methods) to predict the identity of the 
6 target syllables; p < .001 established via a one-sided shuffle test. Bottom: 
linear classifiers trained on syllable-associated pose dynamics were unable to 
distinguish between stimulated and catch trials of single syllables in learner 

mice. Blue shows classifier performance on shuffled data, and red shows 
classifier accuracy over repeated cross validation splits; p = 0.069 established 
via a one-sided shuffle test. g) Stimulation of target syllables did not result in 
fractionated syllables or lowered detection confidence. Top: distribution 
showing entropy of cross-likelihoods for syllable detection for each frame, 
averaged across each experiment. Cross-likelihoods are a quantitative measure 
of confidence in assigning a given frame of behavioural data to a particular 
syllable. Distributions show density of average entropy of cross-likelihoods for 
baseline vs. stimulation experiments; these distributions show no evidence of 
changes in model confidence on experiments where syllables were targeted 
with optogenetic stimulation, consistent with opto-DA not substantially 
changing the kinematics associated with any given syllable in mice that 
learned. Bottom: distributions show probability density across baseline vs. 
stimulation experiments of entropy across maximum likelihoods of every 
syllable. No significant differences were found between stimulation and 
baseline distributions (all comparisons p > .05, two-sided 2-sample Kolmogorov- 
Smirnov test). h) Spatial histogram of frame occupancy of the centroid of the 
animal across stimulation and baseline experiments. Opto-DA mice (DAT-IRES-
Cre::Ai32) on the left, no-opsin controls on the right. i) Left: Jensen-Shannon 
Divergence (JSD) of centroid location probability distributions across mice 
based on locations during stimulation trials (target performance) on 
stimulation day and simulated stimulation trials on baseline days (n = 192 
mouse/target syllable pairs, p = 0.44, U = 4262, f = 0.49, two-sided Mann-
Whitney U test across opto-DA mice and no-opsin controls). Right: JSD of 
centroid location distributions computed over experiment-wide centroid 
locations for each mouse (n = 32 mice, p = 0.41, U = 114, f = 0.48, two-sided 
Mann-Whitney U test). j) Distribution of kinematic parameters averaged per-
mouse and per-target for the target syllable on both baseline and stimulation 
experiments. Left: difference between stimulation and catch trials for the 
targeted syllable on stimulation day. Right: magnitude of kinematic parameters 
for all trials across baseline and stimulation experiments. No significant 
differences were observed between learners and controls (p > .05, two-sided 
Mann-Whitney U test). k) Same as right half of Extended Data Fig. 10j (for 
velocity and acceleration), but for all non-target syllables. No significant 
differences were observed between learners and controls (p > .05, two-sided 
Mann-Whitney U test). l) Average dLight waveform aligned to the onset of 
3-second pulsed stimulation (as elicited by ChrimsonR stimulation). Gray line 
indicates circular shuffle. Shaded error bars indicate 95% CI. Shaded red region 
indicates the duration of ChrimsonR stimulation.
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Table includes viruses, mouse lines, and software packages that were used in this study.
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