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Abstract

A core goal in systems neuroscience and neuroethology is to understand how
neural circuits generate naturalistic behavior. One foundational idea is that complex
naturalistic behavior may be composed of sequences of stereotyped behavioral
syllables, which combine to generate rich sequences of actions. To investigate this,
a common approach is to use autoregressive hidden Markov models (ARHMMs) to
segment video into discrete behavioral syllables. While these approaches have been
successful in extracting syllables that are interpretable, they fail to account for other
forms of behavioral variability, such as differences in speed, which may be better
described as continuous in nature. To overcome these limitations, we introduce a
class of warped ARHMMs (WARHMM). As is the case in the ARHMM, behavior
is modeled as a mixture of autoregressive dynamics. However, the dynamics under
each discrete latent state (i.e. each behavioral syllable) are additionally modulated
by a continuous latent “warping variable.” We present two versions of warped
ARHMM in which the warping variable affects the dynamics of each syllable either
linearly or nonlinearly. Using depth-camera recordings of freely moving mice, we
demonstrate that the failure of ARHMMs to account for continuous behavioral
variability results in duplicate cluster assignments. WARHMM achieves similar
performance to the standard ARHMM while using fewer behavioral syllables.
Further analysis of behavioral measurements in mice demonstrates that WARHMM
identifies structure relating to response vigor.

1 Introduction

A fundamental question in systems neuroscience is how neural activity generates complex behavior [1–
3]. Specifically, a key goal is to understand how changes in neural activity determine which actions
are selected or executed on a moment-by-moment basis. To make progress towards this goal, it is
essential to study ethologically relevant, naturalistic behavior. A common way of studying naturalistic
behavior is to observe animals as they freely explore an environment [4–6]. Such unconstrained,
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Figure 1: A. Single frame of depth video of a freely behaving mouse. B. The frames are projected
onto their top ten principal components (black lines) and then segmented into discrete syllables
(colors) with an autoregressive HMM (ARHMM). C. Each syllable is defined by autoregressive (AR)
dynamics, which can be visualized as a flow field in PCA space. Here, the scatter plot shows the
distribution of frames projected onto the top two PCs, and the red-to-blue trajectories correspond
to multiple instances of one discrete state. D. Empirically, syllables correspond to interpretable
behaviors like investigating, rearing, and falling from a rear, as illustrated here.

spontaneous behavior offers a rich setting for studying behavioral variability. However, the hours of
raw video data required to capture naturalistic behavior in detail are high-dimensional and difficult
to use for follow-up analyses. Thus, a key goal in behavioral neuroscience research is to develop
data-analysis strategies that can extract interpretable lower-dimensional summaries of behavior
[4, 5, 7, 7–10]. Ultimately, such descriptions will facilitate relating complex naturalistic behaviors to
the underlying neural activity patterns that generate them [3, 11]. This will provide insight into how
and why behavior may differ across environmental contexts [2, 3, 11, 12], under pharmacological
manipulations [6] or across health and disease [13, 14].

One hypothesis is that the brain generates complex behaviors by concatenating a series of simpler,
stereotyped actions [4, 5, 11, 15, 16]. Just like syllables form the building blocks of spoken language,
behavioral syllables may be composed to perform complex sequences of behavior. A large focus of
previous work has been to discover such behavioral syllables in an unsupervised manner, thereby
obtaining a low-dimensional description of high-dimensional behavior [4, 5, 12, 16–19].

Autoregressive Hidden Markov Models (ARHMMs) are well-suited to this task [5, 6]. For example,
Wiltschko et al. [5] used depth video to capture the posture of freely moving mice (Fig. 1A). In this
work, authors projected the video frames onto the top D principal components (PCs) to obtain a
D-dimensional time series of behavior. The authors then used an ARHMM to segment the behavioral
time series into discrete syllables (Fig. 1B). Each discrete syllable corresponds to vector autoregressive
dynamics in PC space, which can be conceptualized as a vector field (Fig. 1C). Each instance of
a syllable corresponds to a short, stereotyped trajectory following this vector field (red-to-blue
trajectories in Fig. 1C). Empirically, these often correspond to stereotyped patterns of movement like
rearing, darting, or grooming (Fig. 1D).

However, current modeling approaches have focused on clustering discrete behavioral syllables while
failing to account for other, continuous forms of behavioral variability. For example, the same type of
behavior (e.g. a dart) could be performed more or less vigorously. While these two actions might
be identified by a human observer as the same behavior under different speeds (fast vs. slow darts),
current models lack the ability to allow for such structured continuous variability within states, and
thus might assign these actions to entirely separate behavioral states. As a result, current approaches
often over-segment video data, by allocating distinct clusters to the same movement type. The
data might be better described by a model which incorporates a continuous spectrum of structured
variability within a specific behavior.

We extend the ARHMM by incorporating a latent warping variable. With this Warped Autoregressive
Hidden Markov Model (WARHMM), we are able to capture continuous variability within a discrete
syllable. Thus, we are able to disentangle variability due to (discrete) movement type from other
forms of (continuous) variability, such as movement speed. We consider two types of warping:
time-warping, which captures changes in the speed of evolution of the autoregressive dynamics,
and Gaussian process warping, which allows for nonlinear changes in dynamics. We develop an
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efficient inference algorithm for the WARHMM and show that it can correctly identify the underlying
states and parameters in simulated data. Then, using behavioral measurements of freely behaving
mice, we demonstrate that accounting for continuous sources of behavioral variability can resolve
issues of over-segmentation commonly observed using previous approaches. Furthermore, using
behavioral data of mice treated with either saline solution or amphetamine, we demonstrate that the
WARHMM identifies differences in the distribution of latent warping variables across both groups of
mice. This result reflects potential modulations of movement vigor and speed distributions due to the
pharmacological intervention.

2 Background

We first review related work and then present a brief description of two classes of Hidden Markov
Models that have been used for time series segmentation and behavioral modeling. The key features
of each model form the basis for our warped extension to the ARHMM model, which represents the
main contribution of our work.

Related work in unsupervised behavioral segmentation. We build upon a rich body of work in
the unsupervised behavioral segmentation space. Our model is inspired by the ARHMM approach to
unsupervised behavioral segmentation (MoSeq) proposed by Wiltschko et al. [5], which is described
in the introduction. Berman et al. [4] addressed a similar task in fruit fly video using MotionMapper,
which identifies discrete behavioral states as peaks in a non-linear, two-dimensional embedding of
postural spectrograms. Hsu and Yttri [17] have proposed B-SOiD, which uses a random forest to
classify non-linear postural feature embedding clusters into multiple behavioral classes. Harris et al.
[18] fit an autoregressive linear model to time-windowed postural features using low-rank tensor
decomposition, and interpret clusters in the fit model parameters as discrete behavioral states. Luxem
et al. [19] identify behavioral states by clustering the latent vectors produced by training a variational
autoencoder on input from markerless pose estimation [9]. For a more thorough treatment of work
in unsupervised behavioral quantification, see McCullough and Goodhill [20] for a recent review.
The majority of these related approaches have focused on segmenting behavioral video based on
movement type or on tracking animal pose. The model we introduce in section 3 extends on this work
by explicitly taking other forms of behavioral variability, such as movement speed, into account.

Autoregressive Hidden Markov Models. An ARHMM (Fig. 2A, top) consists of a discrete latent
state variable zt ∈ {1, 2, ...,K} and observations xt ∈ RD. Transitions between the discrete state
values over time are governed by a transition matrix P, where the entry Pk,k′ indicates the probability
of advancing from state zt = k to state zt+1 = k′. Given the discrete state value, the observations
are modeled to evolve according to linear dynamics, where a dynamics matrix Azt and bias term bzt
determine the mapping from xt to xt+1 in the presence of Gaussian noise with covariance matrix
Qzt . Thus, the model represents an extension of classic Gaussian mixture models to time series with
autoregressive dynamics. The ARHMM model can be summarized as

zt+1 | zt = k ∼ Cat(Pk,: ) k ∈ {1, . . . ,K}
xt+1 | xt, zt = k ∼ N (xt + Akxt + bk,Qk) xt ∈ RD

(1)

In the context of behavioral modeling [5], the discrete latent state reflects the behavioral syllable
(such as a dart, leftward turn, rear, etc.) and determines which dynamics are used to describe the
temporal evolution of the observed posture xt.

Factorial Hidden Markov Models. In Factorial Hidden Markov Models (FHMMs) [21], multiple
discrete hidden state variables influence the distribution of observed states. The FHMM model can
be summarized as

z
(i)
t+1 | z

(i)
t = k ∼ Cat(P

(i)
k,: ) k ∈ {1, . . . ,K(i)}, i = 1, . . . ,M

xt | {z(i)t }Mi=1 ∼ p(xt | {z
(i)
t }Mi=1) xt ∈ RD

(2)

FHMMs are useful in cases when aspects of data can be distributed across multiple states. For
example, to fit data that varies according to M binary variables, a standard HMM would need 2M

discrete states, while a FHMM would only need M binary states [21].
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Figure 2: A. Probabilistic graphical models for the ARHMM and the Warped ARHMM. The warping
variables and discrete states (i.e. syllables) together determine the AR dynamics. B. We consider two
types of warping: time-warping, where dynamics are sped up or slowed down by the warping variable,
and GP warping, where the dynamics vary smoothly but nonlinearly with the warping variable.

In the context of behavior, adding additional latent variables is an appealing way to provide structured
variability within discrete syllables. Assuming this variability is included in a reasonable way, an
FHMM has the potential to describe a dataset with fewer discrete latent states than an HMM.

3 Warped Autoregressive Hidden Markov Models

ARHMMs have been successful in clustering video measurements of behavior into discrete sets of
behavioral syllables. However, in practice they are prone to over-segmentation, where behaviors that
appear similar to a human expert are split into distinct clusters. We hypothesize that oversegmentation
arises because the ARHMM conflates discrete sources of behavioral variability — the expression
of distinct behavioral syllables — with continuous sources of variability that cannot be captured by
linear autoregressive dynamics with Gaussian noise.

To address this limitation, we develop Warped Autoregressive Hidden Markov Models (WARHMMs).
WARHMMs extend the ARHMM with an additional latent variable, like in a Factorial HMM. In
addition to the discrete state variable zt, WARHMM includes a latent warping state τt ∈ [−1, 1] at
each time step (Fig. 2A, bottom). The warping state τt modulates the dynamics associated with each
state zt. While zt can model rapid switches in dynamics, τt can account for additional variability in
the dynamics associated with a given latent state.

The general form of this model class can be summarized as follows, where Ak(τt), bk(τt), and Qk(τt)
are functions of τt:

zt+1 | zt = k ∼ Cat(Pk,: ) k ∈ {1, . . . ,K}
τt+1 | τt ∼ p(τt+1|τt) τ ∈ [−1, 1]

xt+1 | xt, zt = k, τt ∼ N
(
xt + Ak(τt) xt + bk(τt),Qk(τt)

)
xt ∈ RD

(3)

Below, we consider two possibilities for how exactly the warping variable modulates the dynamics.

3.1 Time-Warped ARHMM: linear modulation of autoregressive dynamics

Our first specific instance of WARHMM has a direct motivation in terms of time-warping, and we
thus refer to it as a time-warped ARHMM (T-WARHMM). Specifically, we aim to capture continuous
changes in how quickly trajectories move through observation space. If we consider the change in
current state ∆xt = xt+1 − xt due to the dynamics within a given state zt = k and let τ be a log
step-size parameter, we can write

C−τ∆xt = Akxt + bk + Q
1
2 εt, εt ∼ N (0, I) (4)

xt+1 = xt + Cτ (Akxt + bk) + CτQ
1
2 εt (5)
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When τ = 0 the step size Cτ is always one, so equation (5) is equivalent to the classic ARHMM.
For nonzero τ , however, the warping variable modulates how far a single update can move the state,
akin to a time-constant in ordinary differential equations. The constant C determines the maximum
multiplicative factor by which dynamics can be scaled; in our experiments we set C = 2. In terms of
the functional mapping, T-WARHMM corresponds to the following mapping between the warping
state τt and the parameters determining the autoregressive dynamics of the observed states xt:

Azt(τt) = CτtAzt , bzt(τt) = Cτtbzt , Qzt(τ) = C2τtQzt (6)

Fig. 2B (top) shows how an example syllable’s dynamics are sped up or slowed down by changing τ .
As τ increases, the trajectories traverse a greater distance in the same number of time steps. In the
context of behavioral modeling, the time-warping variable may capture modulations in movement
speed. As we will see in section 5, the inferred warping variables correlate with other intuitive notions
of vigor, like centroid velocity in darting syllables, while also offering a quantification of vigor in
stationary syllables such as grooming.

3.2 Gaussian Process-WARHMM: Nonlinear modulation of autoregressive dynamics

The model formulation for T-WARHMM is interpetable and intuitive, but also makes strong para-
metric assumptions about how continuous variability affects the dynamics of behavior. As a point of
comparison, we consider a more flexible model, in which the influence of τt via Azt(τt) and bzt(τt)
is specified nonparametrically in terms of Gaussian processes. This Gaussian Process WARHMM
(GP-WARHMM) moves beyond using τt to describe speed or vigor, as τt could have effects beyond
modulation of time-constants of the dynamics. Here τt can modulate entries of the dynamics matrix
according to a smooth nonparametric function. In particular, the dynamics are modeled as follows:

Akij(τ) ∼ GP(0,Kθ(τ, τ
′)), i, j = 1, . . . , D; k = 1, . . . ,K

bki(τ) ∼ GP(0,Kθ(τ, τ
′)), j = 1, . . . , D; k = 1, . . . ,K

Qk(τ) = Qk, k = 1, . . . ,K.

(7)

where Akij(τ) denotes the (i, j)-th entry of the matrix Ak(τ) and bki(τ) is the i-th entry of the
vector bk(τ), each modeled as a Gaussian Process with mean zero and covariance function Kθ(τ, τ

′).
Thus, each coordinate varies smoothly and independently as a function of τ , a priori. The prior mean
Akij = bki = 0 corresponds to a pause with the state xt remaining stationary in expectation. In our
experiments, we choose a squared exponential kernel with kernel hyperparameters θ = (ρ, σ).

Kθ(τ, τ
′) = ρ2 exp

{
− 1

2σ2
(τ − τ ′)2

}
, (8)

Fig. 2B (bottom) shows how an example syllable’s dynamics are modulated by changing τ in a
GP-WARHMM. The central dynamics (Ak(τ = 0)) are the same as in the T-WARHMM above, but
now τ can have nonlinear effects on the dynamics that do more than simply slow them down or
speed them up. This extra flexibility could be useful for capturing more general types of continuous
variability within discrete syllables, but it may also come at the cost of interpretability.

3.3 Inference and Learning

Though we have presented τt ∈ [−1, 1] as a continuous latent variable, in practice we find it sufficient
to discretize τt over a fine grid of J evenly spaced points, since it is a one-dimensional, bounded
random variable. Once discretized, we model the warping variable dynamics as a Markov process
with a banded transition matrix to encourage small, local changes over time. Similarly, the GP
prior in eq. (7) reduces to a multivariate normal after discretization. Full details are provided in the
Supplementary Material.

As in standard ARHMMs, we estimate the states and parameters with the Expectation-Maximization
algorithm (EM) [22]. We perform exact inference over the discrete syllables and warping variables
using the forward-backward algorithm, which runs in O(T (K2 + J2)) time and uses O(TKJ)
memory. For both the time-warped and GP-warped ARHMMs, the parameter updates have closed-
form solutions. For large datasets, we used stochastic EM [23] to speed convergence. For the
GP-WARHMM, we learned the kernel hyperparameters through optimization of the variational lower
bound. Again, complete details are in the Supplementary Material.
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Figure 3: A. Illustration of the dynamics of the simulated example. Two discrete latent states represent
a clockwise (z = 2, bottom) and counterclockwise (z = 1, top) rotation, each shown as vector fields.
The speed of the rotation is modulated via different values of τ , where Az(τ) = 2τAz . B. Illustration
of one instance of the 2-dimensional state trajectory (x1(t), x2(t)) as the generative dynamics are
modulated by both state switches in z (discrete variability, blue versus pink) and changes in rotation
angle via τ (continuous variability, shading of color bar). C. The generative values for 2× 2 matrices
Az(τ) = 2τAz (top row) together with the learned matrices for T-WARHMM (tw, middle) and
GP-WARHMM (gp, bottom). T-WARHMM is able to learn the variations in the autoregressive
dynamics. GP-TWARHMM learns the overall rotation structure of this example, but the increased
flexibility of the GP model makes it harder for it to disentangle discrete and continuous contributions
to changes in Ak(τ). D.-E. The true and inferred latent paths (posterior mode) for zt (D) and τt (E)
under each model.

4 Synthetic data validation

We begin by generating two-dimensional synthetic data xt ∈ R2 with K = 2 discrete states. The
autoregressive dynamics under each discrete state are chosen to be a clockwise and counterclockwise
rotation. We modulated the dynamics with a time-warped ARHMM, setting Ak(τ) = 2τAk, as
illustrated in Fig. 3A. For this simple experiment, we limited the true time-warping variables to
J = 5 values of τ evenly spaced on [−1, 1]. A snippet of simulated data and the corresponding time
constants and states is shown in Fig. 3B. We fit a GP-WARHMM and T-WARHMM with K = 2
states and J = 5 warping variables to data simulated from this model, and additionally compare
results in terms of log-likelihood performance to a classic ARHMM with K = 2, 4, 10 discrete states.

Model Train LL Test LL
T-WARHMM 0.035 0.066
GP-WARHMM -0.018 0.024
2-state ARHMM -0.192 -0.155
4-state ARHMM -0.082 -0.030
10-state ARHMM 0.007 0.037
True Model 0.048 0.077

Table 1: Comparison of test log likelihoods
on simulated data across true and fitted mod-
els. Higher test LL overall is due to random
sampling of train/test data.

The results from this experiment are summarized
in Fig. 3C-E and Table 1. Panel C shows the
true and learned values of entries of the autore-
gressive dynamics matrix Az(τ) as both z and τ
vary. We see that both the T-WARHMM and GP-
WARHMM learn dynamics that reflect the overall
rotational structure of the matrix. However, only
T-WARHMM is able to recover the clockwise and
counterclockwise variation with z and correct speed
modulation with τ .

The increased flexibility of GP-WARHMM, allows
it to achieve a test log likelihood which outperforms
the K = 2, 4 state ARHMMs (Table 1), without

correctly disentangling discrete and continuous contributions to the observed data variability. Fig.
3D and E show the true state changes in zt and τt, together with the mode of the inferred posterior
distributions under each model. T-WARHMM is able to recover the correct segmentation of the data,
while GP-WARHMM’s increased flexibility allows it to fit the data, but in a less interpretable way.
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Figure 4: A. Comparison of log-likelihood on held-out test data as a function of the number of discrete
latent states after training the different model classes on the MoSeq dataset. B. For an ARHMM
and T-WARHMM with similar test log-likelihoods, total number of syllables that are grouped into
the same behavior class by expert neuroethologists. The ARHMM creates new syllables to model
qualitatively similar behaviors.

5 Modeling depth video of freely behaving mice

For the remainder of the paper, we are interested in extracting discrete and continuous structure in
behavior from posture data xt extracted from depth-imaging recordings of freely behaving mice. To
do this, we reanalyze data from Wiltschko et al. [5], which represents the original application of the
ARHMM to clustering mouse behavior. In the context of this dataset, the ARHMM approach is often
also referred to as MoSeq, and we thus refer to the dataset as the MoSeq dataset.

In the MoSeq dataset, the observations xt are taken to be the first 10 principal components of depth
camera video data of mice exploring an open field. The dataset consists of 20-minute depth camera
recordings of 24 mice. In preprocessing, the videos are cropped and centered around the mouse
centroid, and then filtered to remove recording artifacts. Finally, the preprocessed video is projected
onto the top principal components to obtain a 10-dimensional time series.

5.1 Comparison of model performances on the MoSeq dataset

To provide a direct comparison of performance between the ARHMM, T-WARHMM, and GP-
WARHMM, we trained each model using 50 epochs of stochastic EM. The ARHMM is equivalent to
setting the number of τ -values in T-WARHMM to J = 1. T-WARHMM and GP-WARHMM each
had J = 31 evenly spaced values of τ on the interval [−1, 1].

Fig. 4A shows the log-likelihood of each model on held-out test data for a range of K values.
For a given value of K, both T-WARHMM and GP-WARHMM outperform the classic ARHMM
in terms of their generalization performance on unseen data. However, we achieve similar test
log-likelihoods for an ARHMM with K = 40 syllables, a T-WARHMM with K = 25 syllables, and
a GP-WARHMM with K = 10 syllables. This further illustrates that the ARHMM has to account for
continuous variability by creating a larger number of discrete states, while the factorial structure of the
WARHMMs enables syllables to be merged when the difference in their dynamics can be explained
by changes in τ . The GP-WARHMM outperforms the T-WARHMM in terms of test log-likelihood,
which can be attributed to the fact that the GP-WARHMM is more flexible than the T-WARHMM
and can capture additional structure in the data. However, the GP-WARHMM accomplishes this at
the cost of interpretability. The T-WARHMM warping constant is physiologically motivated and, as
we will show in the later results, has direct correlations to centroid velocity and other notions of vigor.
While the GP-WARHMM warping variable is allowed to vary the syllable in whichever way will
increase data log-likelihood, the T-WARHMM is restricted to modulating syllables in a way that is
biologically interpretable. We believe that this interpretability of T-WARHMM makes it more useful
for behavioral analysis purposes and thus focus on the utility of T-WARHMM in the remainder.

7



0.5 1 2
0

1

2

3
rear

0.5 1 2
0

1

2

3
groom

0.5 1 2
0

2

4

6

8
dart

0.0 0.2 0.4 0.6 0.8 1.0

Vigor (2 )
0.0

0.2

0.4

0.6

0.8

1.0

C
en

tro
id

 v
el

oc
ity

Figure 5: Centroid velocity (pixels/ms) vs. inferred vigor (2τ ) for three representative states of the
TW-ARHMM, showing a clear positive correlation between the variables.

5.2 Interpreting the time-warping variable

Which syllables are “warped”? To begin our analysis of the T-WARHMM results, we fit a model
with K = 20 discrete states and J = 31 time constants. As shown in Fig. 4A, this model attains
similar test log-likelihood to an ARHMM with K = 35 discrete states. We then determine which
types of syllables are over-represented as multiple distinct discrete states in the ARHMM by analyzing
the syllable labels from each model. After generating sample videos of behavior from both models,
we asked expert neuroethologists and MoSeq users to label the syllables produced. We then gathered
the labels under three general behaviors: darts, grooms/pauses, and rears. The results are shown
in Fig. 4B. Both models have similar numbers of darting states, while the numbers of grooms and
rears are reduced in T-WARHMM, with T-WARHMM halving the number of rear states. While
T-WARHMM does not completely resolve the oversegmentation issue, it is able to perform as well
as the ARHMM with fewer syllables. More details and video examples of behaviors identified by
T-WARHMM are provided in the Supplementary Material.

Connections to centroid velocity. From our formulation of the time warping variable, it is expected
that the time warping variable and centroid velocity of the mouse would be highly correlated. In Fig.
5 we plot measured centroid velocity (in pixels/ms) vs. inferred vigor (2τ ) for four representative
states. We see a strong relationship between centroid velocity and vigor for the darting state, where
we would expect such a relationship to occur. The other states also show this relationship, but
less consistently. In these states, the warping variable may be accounting for additional forms of
timing-related variability that are not well accounted for by centroid speed. These analyses validate
that the time warping parameter τ is able to extract speed-related information also contained in
centroid velocity for behavioral syllables such as darting motions.

5.3 Identifying drug-induced changes in behavior

Finally, we analyze video recordings of two groups of mice treated with either saline solution or
amphetamine. As shown in Fig. 6A, the distribution of centroid speed varies slightly between the
groups, with the amphetamine-treated mice performing actions at higher speeds more frequently than
the saline mice. We fit a T-WARHMM with J = 31 time constants and K = 20 syllables to both
sets of data. Fig. 6B shows the the inferred vigor (2τ ) distributions from two representative syllables,
demonstrating that there is a clear rightward shift between amphetamine and saline treated mice. This
indicates that amphetamine mice use faster time warping variables more frequently than saline mice.
The difference between means of the τ index distributions are shown in Fig. 6C. Our model shows
a significant difference (p < 0.05, independent t-test) between the means of the τ distributions for
all except one of the inferred syllables. Thus, T-WARHMM is able to detect and dynamically track
drug-induced differences in behavior across both groups of mice.

6 Conclusion

We have introduced an approach for unsupervised behavioral modeling which allows for the iden-
tification of continuous variability within discrete behavioral syllables. Our work builds on a prior
state-of-the-art technique, which uses a discrete hidden state in combination with autoregressive
linear dynamics to cluster behavior. In our proposed model extension (WARHMM), underlying the
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Figure 6: A. The distribution of centroid speed across mice treated with saline (blue) or amphetamines
(pink). B. Histograms showing the vigor distributions across the two classes of mice treated with
saline (blue) or amphetamines (pink) for two example syllables (discrete states). The dashed lines
indicate the mean of distributions, showing a clear increase in mean vigor in the amphetamine treated
group. C. Mean τ index for each of the 20 discrete states in the model for both the saline (blue) and
amphetamine (pink) treated mice. The inferred τ indices in the amphetamine treated group are larger
(higher vigor, faster movement speed) for all but one syllable.

behavioral measurement at each time point are both a discrete state variable and a warping variable.
Both of these latent variables modulate the dynamics of the syllable, either through discrete switches
(via the discrete state variable) or through more continuous forms of modulation (via the warping
variable). We found that WARHMM achieved similar performance in terms of log-likelihood on held
out test data while utilizing fewer discrete latent states than the ARHMM.

Our analyses on mouse behavioral data focused on an interpretable subclass of warped ARHMM,
where the warping variable interacts linearly with the autoregressive dynamics of the observed
data (the T-WARHMM). Notably, the warping variable in this simple model can be viewed as
implementing a local rescaling of time. Similar time warping models have been fruitfully applied
to trial-structured neural data [24, 25], and our work illustrates how these ideas can be extended
to naturalistic time series data that lack repeated trial-structure. Our work on mouse behavioral
data illustrates that continuous variability in behavior may be induced through pharamacological
interventions and can be extracted directly from video recordings.

Limitations. For simplicity, we discretized τ on a fine grid instead of explicitly performing in-
ference over the continuous variable. This was done in favor of computational efficiency and ease
of inference. While we believe the fine grid we’ve used for τ offers a good approximation of a
continuous function, future work could capture continuous variability by including a truly continuous
posterior, e.g. via a Gaussian Process [24]. Furthermore, our model assumes that the behavioral
PCs evolve according to linear dynamics, and though the GP-WARHMM allows these dynamics to
be modulated in nonlinear ways, the basic assumption could be relaxed to more general nonlinear
dynamics in future work.

Unsupervised deep learning approaches exist to address similar problems in the behavioral segmen-
tation space, e.g. B-SOiD [17]. Another approach could involve including speed as an input and
clustering features for these methods. However, since clusters are defined based on differences in
input features, we predict that this approach would lead to further segmentation of syllables. In
contrast, the motivation behind WARHMM is to collapse syllables together by allowing for structured
variation within a single syllable.

Future work. This work establishes multiple directions for future research. The first involves
further extending the ARHMM model by adding in additional forms of structured, interpretable
variability. What aspects of behavior, in addition to speed, may vary within syllables? In the context of
mouse behavior, variables such as turning radius or depth-camera pixel height may provide additional

9



continuous axes along which behaviors can be modulated. Another future direction lies in using
T-WARHMM to analyze neural correlates of behavior. Similar behavioral segmentation approaches
have been used to simultaneously analyze the evolution of behavioral and neural recordings [8, 26–
28]. A future research area of particular interest lies in understanding how the dorsolateral striatum
encodes action selection and vigor [13, 29–32]. Neural activity in this midbrain nucleus is known to be
disrupted in motor diseases like Parkinson’s and Huntington’s [33, 34]. The T-WARHMM approach
allows us to simultaneously extract descriptions of movement type (how frequently actions are
selected) and movement speed (how vigorously actions are performed) from behavioral measurements.
We expect that the ability to disentangle the contributions of these two factors could provide an
important basis for better understanding how variations in neural activity determine changes in action
selection and vigor. Finally, the models we have proposed here could be applied more widely to
analyze other types of behavioral data.
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