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Abstract

Characterizing animal behavior requires methods to distill 3D move-
ments from video data. Though keypoint tracking has emerged as
a widely used solution to this problem, it only provides a limited
view of pose, reducing the body of an animal to a sparse set of
experimenter-defined points. To more completely capture 3D pose, recent
studies have fit 3D mesh models to subjects in image and video data.
However, despite the importance of mice as a model organism in neu-
roscience research, these methods have not been applied to the 3D
reconstruction of mouse behavior. Here, we present ArMo, an artic-
ulated mesh model of the laboratory mouse, and demonstrate its
application to multi-camera recordings of head-fixed mice running on
a spherical treadmill. Using an end-to-end gradient based optimiza-
tion procedure, we fit the shape and pose of a dense 3D mouse model
to data-derived keypoint and point cloud observations. The resulting
reconstructions capture the shape of the animal’s surface while com-
pactly summarizing its movements as a time series of 3D skeletal
joint angles. ArMo therefore provides a novel alternative to the sparse
representations of pose more commonly used in neuroscience research.
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2 ArMo: An Articulated Mesh Approach for Mouse 3D Reconstruction

1 Introduction

Understanding how the brain produces behavior is a primary goal of neuro-
science (Krakauer et al. 2017; Datta et al. 2019), and accomplishing this goal
could yield insights that inform research in AI, robotics, and related fields.
Given that behavior is ultimately expressed through the 3D movements of
an animal’s body, methods for automatically extracting 3D pose from video
recordings are essential for its study (Marshall et al. 2022). Moreover, since
a great deal of neuroscience research involves mice, methods for measuring
mouse movement kinematics are of particular interest.

In neuroscience research, the pose of an animal is often parameterized by
the positions of defined locations (or “keypoints”) on the animal’s body, such
as skeletal joints or superficial structures like the nose and ears (Mathis &
Mathis 2020). Though keypoint tracking is highly informative, a limitation of
this approach is that it reduces an animal’s body to a sparse set of points
rather than capturing the body’s full shape. While this may suffice in animals
with simple shapes or rigid exoskeletons, rodents have a highly deformable
surface whose morphology is not fully captured by sparse representations.

Recent pose estimation studies of both human (Bogo et al. 2016; Huang et
al. 2018) and animal (Zuffi et al. 2017; Badger et al. 2020) subjects have pio-
neered the use of articulated meshes as parametric body models. Articulated
meshes are a commonly used class of 3D graphics models consisting of a poly-
gon mesh and an underlying skeletal rig (e.g., Loper et al. 2015). Because these
models represent the complete surface of an animal’s body, they can effec-
tively capture the shape of structures that are poorly represented by a skeleton
alone, such as fatty tissues. The parameters of an articulated mesh model can
be fit to real data by minimizing the discrepancy between the shape and pose
of the mesh and image-derived features such as keypoint positions and seg-
mentation masks. These mesh fitting methods afford rich 3D reconstructions
of a subject’s behavior from video recordings and could provide useful data for
neuroscience research. However, there are currently no such methods for mice.

Here, we present ArMo, an articulated mesh model of the laboratory mouse
that can be fit to keypoints and point clouds derived from multiview behavioral
videos. We demonstrate ArMo by capturing the detailed body movements of
head-fixed mice as they navigate in virtual reality (Harvey et al. 2009).

2 Related Work

2.1 Pose inference with articulated mesh models

Pipelines to reconstruct human shape and pose in 3D typically rely on a gen-
erative graphics model of the human body (Wang 2021). The most popular
such model is SMPL, a linear model derived from thousands of high quality
3D scans of people in various poses (Loper et al. 2015). SMPL captures varia-
tion in pose using joint angles and variation in shape via a 3D-scan principal
component representation. A variety of methods have used the SMPL model
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to estimate human pose and shape from images. SMPLify used pose priors and
keypoint tracking to iteratively fit SMPL parameters to individuals in single
images (Bogo et al. 2016). Further work extended this approach to multi-view
video by incorporating temporal priors and a silhouette optimization term that
relies on image segmentation (Huang et al. 2018).

Like approaches for humans, animal mesh reconstruction typically relies
on parametric mesh models. The SMAL model is one such model for large
quadrapeds such as cows, horses, and dogs that was learned using scans of
animal figurines (Zuffi et al. 2017). Related work on 3D bird reconstruction
circumvented the need for 3D scans by instead parameterizing shape variation
using a set of bone lengths and an overall scale parameter (Badger et al.
2020). Like SMPL, both of these models are fit to real data using optimization
procedures that incorporate keypoints, silhouettes, and priors on shape and
pose.

2.2 3D pose inference in rodents

There has been a recent proliferation of methods for 3D pose inference in
rodents (see Mathis & Mathis 2020 and Marshall et al. 2022 for a more in-
depth review). Approaches such as DeepLabCut 3D use neural networks to
independently extract 2D keypoints from multiple view angles and then tri-
angulate them to obtain 3D positions (Nath et al. 2019). Alternatives, such
as DANNCE, instead project image features into 3D space and then use vol-
umetric convolutions to regress 3D keypoint positions directly (Dunn et. al.
2021; Schneider et. al. 2022). To improve on these algorithms, some methods
have leveraged model-based approaches. For example, GIMBAL instantiates
spatiotemporal priors on the overall pose of the animal via a hierarchical von
Mises-Fisher-Gaussian model, which results in better inference of 3D key-
point positions than naive triangulation (Zhang et al. 2021). Another approach
called the ACM (anatomically constrained model) uses Kalman smoothing and
pose priors to accurately reconstruct 3D skeletal kinematics in freely behaving
rodents over a wide range of sizes (Monsees et al. 2022). Other methods have
fit simplified body models to rodents. 3DDD Social Mouse Tracker, for exam-
ple, uses a particle filtering algorithm to fit pairs of prolate spheroids to point
cloud and keypoint observations of mice (Ebbesen & Froemke, 2022).

3 Approach

To develop an articulated mesh model of the laboratory mouse, we started
with an artist generated 3D model and simplified it by removing the joints
corresponding to digits on the forepaws and hindpaws. The resulting model
consists of a skeleton with 30 joints, a mesh with 1,803 vertices and 3,602 faces,
and an 1803 × 30 matrix of skinning weights that determines mesh shape as
a function of joint angles (Fig. 1; Supplementary Video 1). To facilitate the
fitting of the model to keypoint observations, we also manually specified which
subsets of vertices on the mesh correspond to keypoints of interest.
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4 ArMo: An Articulated Mesh Approach for Mouse 3D Reconstruction

Knowledge of mouse anatomy was leveraged to simplify the shape and
pose parameters. In particular, to reduce the number of trainable parameters,
we used weight sharing to enforce left-right symmetry in the bone lengths.
Similarly, we froze certain degrees of freedom in the joint angles to ensure a
measure of anatomical accuracy in the mouse’s pose (for example, by prevent-
ing the knee from rotating laterally). After these constraints were applied, the
model had 93 free parameters. It is important to note that although the mod-
eled skeleton is made up of “joints” and “bones”, it should only be thought
of as a useful parameterization of pose rather than an anatomically precise
description of real joint angles and positions in the animal’s body.

To parameterize and skin the mesh model, we used the procedure intro-
duced in Badger et al. 2020 (described fully in the next section). To fit the
mesh model’s pose and shape to videos of real mice, we enumerated an objec-
tive function that quantifies how well a given mesh configuration matches
data-derived keypoint and point cloud observations. As in other mesh opti-
mization approaches, we leverage the fact that the loss function is differentiable
with respect to the mesh parameters to fit the pose and shape via end-to-end
gradient-based optimization.

3.1 Pose Parameterization and Skinning Algorithm

Let J = 30 and N = 1, 803 denote the number of skeletal joints and mesh ver-
tices in the model, respectively. The J joints in the skeleton are hierarchically
arranged in a kinematic tree specifying which joints are connected by bones.
The root joint is indexed by j = 1, and its “parent-relative” descriptors are
defined with respect to the global coordinate system. The mesh vertices are
connected by 3,602 triangular faces, and their positions are determined by the
rotations and positions of the joints via linear blend skinning.

The pose of the model is parameterized by four trainable variables: a set
of bone lengths α ∈ RJ , where αj is a scalar controlling the length of the
bone connecting the j’th joint and its parent joint; a set of pose parameters
θ ∈ RJ×3, where θj denotes the axis-angle representation of the j’th joint’s
rotation in its parent’s reference frame; a translation vector γ ∈ R3 controlling
the global position of the root node in the world; and a scale parameter σ ∈ R
controlling the overall size of the mesh model. Note that for all j, we compose
the rotation specified by θj with the rest pose rotation for joint j. Therefore,
these joint angle values are not absolute, but rather differences from the rest
pose

Let M(α, θ, γ, σ) denote the blend skinning function that takes in the pose
parameters and returns a mesh M ⊂ R3 (note that while M is a continuous
surface defined by both its vertices and faces, we use the subscript notation
Mi to index the i’th of its N discrete vertices). We chose to use linear blend
skinning to determine the posed positions of the mesh vertices, but note that
any other differentiable skinning function could also work in principle. The
blend skinning parameters include: a zero pose θ∗ ∈ RJ×3 defining the parent-
relative rotations of each joint at rest; a set of rest pose joint offsets {J ∗

j }Jj=1 ⊂
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R3 specifying each joint’s position in the reference frame defined by its parent
joint; a set of rest pose vertex positions {M∗

i }Ni=1 ⊂ R3; and a matrix of
skinning weights W ∈ RN×J . We assume that the root node is centered at the
origin (i.e., J ∗

1 = 0) to ensure that the global translation parameter γ is not
degenerate. Finally, for each of the K keypoints of interest, we define a subset
of mesh vertices Vk ⊆ {1, 2, . . . , N}. Each keypoint is assumed to lie at the
centroid of its respective vertex-set.

In order to skin the model, we first determine the pose of the skeleton, which
is defined by the global rotation and position (henceforth the “transform”) of
each of its J joints. As is standard in skeletal rigging, we represent the global
transform of joint j as a matrix Gj ∈ SE(3) ⊂ R4×4, and to compute Gj , we
determine the local transforms associated with each of joint j’s ancestor nodes
and propagate them down the skeletal tree. More formally,

Gj =
∏

j∈A(j)

[
exp(θj) exp(θ

∗
j ) αjJj

000 1

]

G∗
j =

∏
j∈A(j)

[
exp(θ∗j ) Jj

000 1

]

where A(j) represents the ordered set of joint j’s ancestors (starting with
the root node and terminating with joint j itself), G∗

j represents joint j’s
global transform in the rest pose with the default bone lengths, Gj represents
the global transform with the effects of bone length scaling and posed joint
rotation accounted for, and exp(·) denotes the Rodrigues formula, which is a
differentiable transform that converts axis-angle representations of rotations
into their associated 3× 3 rotation matrices.

Next, to determine the positions of the mesh vertices, we use linear blend
skinning and apply the scale and translation parameters:

Mi = σM′
i + γ[

M′
i

1

]
=

J∑
j=1

Wj,iGj(G
∗
j )

−1

[
M∗

i

1

]
.

Finally, to determine the position of each mesh keypoint, we simply com-
pute the mean position of its associated mesh vertices. More formally, let
P (M) denote the function that takes in the mesh and returns a set of keypoint
positions P, where Pk denotes the position of the k’th keypoint. Then

Pk =
1

|Vk|
∑
i∈Vk

Mi.
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6 ArMo: An Articulated Mesh Approach for Mouse 3D Reconstruction

3.2 Pose Optimization

Using a procedure similar to SMPLify (Bogo et al. 2016) and 3D bird recon-
struction (Badger et al. 2020), we fit the pose parameters to data by minimizing
a loss function with two data terms and four regularization terms. The data
terms capture how well the posed mesh corresponds to the keypoint and
point cloud observations, and the regularization terms encode anatomical and
temporal priors on the shape and pose.

To incorporate temporal priors, we simultaneously fit the pose across all
T frames in a temporally contiguous segment of video. More formally, let
Θ = {θ(t)}Tt=1 and Γ = {γ(t)}Tt=1 respectively denote the relative joint angles
and translations for each timestep. Similarly, for convenience, let M(t) =
M(α, θ(t), γ(t), σ) and P(t) = P (M(t)) denote the mesh vertices and mesh key-
points associated with the pose at timestep t. Note that the shape parameters
α and σ are shared across timesteps. The loss function L can be written as
follows, with each λ coefficient specifying the non-negative scalar weight of its
associated loss term:

L(α,Θ,Γ, σ) =
1

T

T∑
t=1

(
λkpLkp(P(t)) + λpcLpc(M(t))

)
+ λtimeLtime(Θ,Γ) + λαLα(α) + λθ1Lθ1(Θ) + λθ2Lθ2(Θ).

The keypoint loss Lkp measures the distance between the reprojections
of the mesh keypoints onto each sensor and the corresponding image-derived
keypoint predictions. It has the following functional form:

Lkp(P(t)) =

K∑
k=1

C∑
c=1

w
(t)
k,cρ

(
∥Πc(P(t)

k )− y
(t)
k,c∥2

)
,

where ρ is the Geman-McClure function, which has been used in prior works
for its robustness to noisy outliers (Geman 1987; Bogo et al. 2016; Badger et
al. 2020), Πc is the pinhole camera projection function mapping 3D points in

world coordinates to the pixel space of camera c, y
(t)
k,c ∈ R2 is the estimated

pixel location of keypoint k in camera c’s image at time t, and w
(t)
k,c ≥ 0 is the

confidence associated with y
(t)
k,c (Bogo et al. 2016).

The point cloud loss Lpc quantifies the overall shape mismatch between
the point cloud and the mesh at a given timestep. Whereas prior work (e.g.,
Huang et al. 2018, Badger et al. 2020) has typically used 2D segmentation
masks to provide shape supervision, here we leverage point clouds derived
from depth imaging to incorporate 3D shape information more directly. To
do so, the point cloud loss computes the sum of squared Euclidian distances
from each point in the point cloud to the nearest face on the triangular mesh.
This value can be approximated by sampling points from the surface of the
mesh and computing pairwise distances. Because some regions of the animal’s
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surface may be absent in the point cloud due to occlusions, this distance term
is unidirectional, unlike the more commonly used Chamfer distance. It has the
following functional form:

Lpc(M(t)) =
1

|X(t)|
∑

x∈X(t)

min
v∈M(t)

∥x− v∥22,

where X(t) ⊆ R3 denotes the point cloud at time t.
The temporal loss Ltime encourages smooth movements by penalizing

the magnitude of the difference between the pose parameters at successive
timesteps (Huang et al. 2017; Biggs et al. 2018). More formally,

Ltime(Θ,Γ) =
1

T − 1

T−1∑
t=1

(
∥vec(θ(t+1) − θ(t))∥2 + ∥γ(t+1) − γ(t)∥2

)
.

We also use three other regularization terms described in Badger et al.
2020. The bone loss term Lα penalizes the model for assigning bone lengths
outside of a predefined range of allowable values. It is defined as

Lα(α) = ∥max(0, α− αmax, αmin − α)∥1,

where max is applied element-wise and αmin, αmax ∈ RJ define the bounds
outside of which a linear penalty is applied to each entry of α. Similarly, Lθ1

linearly penalizes joint rotations outside the bounds defined by θmin, θmax ∈
RJ×3:

Lθ1(Θ) =
1

T

T∑
t=1

∥max(0, vec(θ(t) − θmax), vec(θmin − θ(t)))∥1.

Finally,

Lθ2(Θ) =
1

T

T∑
t=1

∥vec(θ(t))∥1

penalizes deviations from the rest pose.
We minimize the loss using gradient descent, with the optimization divided

into two phases. In the first phase, we optimize σ, Γ, and {θ(t)1 | θ(t) ∈ Θ} to
determine the overall scale, position, and orientation of the mouse in global
coordinates. In the second phase, we allow all of the parameters except for σ
to freely vary, thereby learning α and the remaining joint angles in Θ.

In order to fit the mesh model to video data, we implemented this optimiza-
tion procedure in PyTorch and leveraged the package’s auto-differentiation and
hardware accelerator functionalities (Paszke et al. 2017). We also relied on a
number of features from PyTorch3D, including its implementations of camera
projections, differentiable sampling, and point cloud related functions (Ravi
et al. 2020). To perform the optimization itself, we used an Adam optimizer
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(Zhang 2018) to fit the mesh in batches of 300 contiguous timesteps (corre-
sponding to five seconds of 60 fps video). Simultaneously fitting the mesh for
all the frames in a long recording is infeasible, yet the shape parameters for a
single mouse should not vary over time. To get around this, we first fit both
the shape and pose with no temporal regularization (i.e., by setting λtime = 0)
to a noncontiguous, randomly sampled subset of the frames. Using the shape
(α and σ) learned from this random batch, we then fit the pose (Θ and Γ)
for the remainder of the video, thereby disentangling shape and pose in our
reconstruction of the behavior.

4 Experiments

4.1 Data acquisition

We built an experimental setup to capture the full-body movements of head-
fixed mice running on a spherical treadmill (Fig. 2). To minimize occlusions
and maximize the quality of the 3D reconstruction, we placed four stereo depth
cameras (Intel Realsense D435) around the treadmill. Each camera has two
closely-spaced infrared sensors (yielding a total of eight images per time point)
and an infrared projector that illuminates the scene with a random dot pattern
that aids depth estimation in less textured regions of the image, such as the
side of the mouse. Videos were acquired at 640× 480 resolution and 60 frames
per second, and a very short shutter time of 750 microseconds was used to
minimize motion blur. Using this setup, we recorded videos of mice as they
performed a virtual navigation task. In addition, OpenCV (Bradski 2000) was
used for camera calibration and stereo matching.

4.2 Feature Extraction

We performed 2D keypoint localization and semantic segmentation simulta-
neously using a multi-headed deep convolutional neural network (Fig. 3A)
with a pretrained HRNet backbone (Wang et al. 2020). The tracked keypoints
included the nose, mouth, eyes, ears, forepaws, ankles, hindpaws, tail base, and
tail tip. Semantic segmentation was used to detect the mouse, the spherical
treadmill, and any occluders between the mouse and the camera (such as the
hardware used for head restraint). The network performed well on validation
data, with low pixel distance between real and estimated 2D keypoints (Fig.
3B) and high intersection over union with the true segmentation masks (Fig.
3C).

To generate point clouds, we first performed offline stereo matching on the
paired images from each camera, producing a map of estimated depth values for
each pixel. The depth images were then filtered using the mouse segmentation
masks and projected into a common 3D coordinate space. To refine the point
cloud, we first cropped it to the 3D bounding box of the behavioral rig and then
removed points whose average distance to their nearest neighbors exceeded an
outlier threshold. This procedure resulted in reasonable looking point clouds
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that captured the shape of the mouse based on inspection of example frames
(Fig. 4; Supplementary Video 2).

4.3 Model Fitting

To test the optimization procedure, we fit ArMo to keypoint predictions and
point cloud observations derived from three hours of the acquired video data
(Fig. 5B; Supplementary Video 3). Visual inspection of the resulting mesh fit
videos revealed that the procedure nicely recovered the shape of the mouse
across views and captured its running on the spherical treadmill (Fig. 5A;
Supplementary Video 4).

We also performed an ablation experiment to determine how the point
cloud data contributed to the mesh reconstruction. We found that the point
cloud term improved the similarity between the mesh and the point cloud
(Fig. 5C) while only negligibly increasing the median keypoint error (Fig. 5D).
While this improvement was expected given that the optimization procedure
directly minimizes this value, it nonetheless suggests that the keypoints alone
do not fully specify the pose, and that additional sensor data (e.g., depth) can
further constrain the remaining degrees of freedom.

To analyze the behavior of the mice, we performed principal component
analysis on the 3D joint positions (excluding points in the tail) output by
ArMo. Six principal components collectively explained 84.3% of the variance
in the dataset (Fig. 6A). The components captured pose states characteristic
of various behaviors, such as turning (component 1) and running (component
3) (Fig. 6C-D), and exhibited corresponding dynamics over time (e.g., smooth
oscillatory dynamics in component 3 during running bouts; Fig. 6B).

5 Conclusions

ArMo provides a novel alternative to 3D pose reconstruction in mice that
captures the animal’s surface and movements more holistically than sparse
representations like keypoints. To validate this method, we showed that it can
reconstruct the movements of mice running on a spherical treadmill. We also
leveraged point cloud data to aid mesh fitting. Future work could build on
ArMo by generalizing this approach to freely moving mice, amortizing the
fitting procedure by inferring mesh parameters directly from video (Kolotouros
et al. 2019; Badger et al. 2020), or more deeply characterizing how mesh-based
representations of pose differ (e.g., in their dynamics or dimensionality) from
3D keypoint representations.
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Figures

Fig. 1 ArMo mesh model
A: Triangle mesh surface as it appears in the rest pose. B: Wireframe view of the mesh with
the underlying skeleton in black. Colored points indicate keypoints used for fitting.
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Fig. 2 Behavioral setup and data acquisition.
A: Recording rig, featuring a mouse on a spherical treadmill, a thin tube for delivery of
water rewards, and four Intel RealSense D435 depth cameras. B: Photograph of the behavior
setup corresponding to the schematic in (A). C: Example images from the infrared sensors.
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Fig. 3 2D keypoint and segmentation network.
A: Network architecture: An image is passed through a convolutional backbone which
results in a feature map. This map is passed through two separate heads, one for 2D key-
point estimation and one for semantic segmentation. B: Distribution of distances between
human-annotated and model-predicted 2D keypoint locations in the validation dataset. C:
Distribution of intersection over union scores for human-annotated vs. model-predicted seg-
mentation masks in the validation dataset.
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Fig. 4 Point cloud pipeline
A: Overview of steps. B: Estimated depth maps for an example frame. The high noise-level
is mostly attributable to reflections from the Styrofoam sphere that supports the mouse. C:
Example point cloud in world coordinates, colored by pixel values in the original infrared
images. D: Point cloud after masking with the estimated mouse silhouettes. E: Point cloud
after cleaning with nearest neighbors. F: Same as (E), but colored by the identity of the
camera from which the points originated.
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Fig. 5 Model fitting
A: Mesh reconstructions overlaid on the original images. The color of each mesh vertex is
shared across camera views. Each row corresponds to a timestep, and each column corre-
sponds to a camera. B: Progression of each loss term during fitting. Note the log scale. C:
Distributions of cloud-to-mesh distances across timesteps for the full optimization proce-
dure (blue) and the point cloud ablation (orange). The cloud-to-mesh distance measures the
average squared distance from each point cloud element to the mesh surface. Lower values
indicate a greater shape similarity between the real and reconstructed mouse. D: Distribu-
tions of keypoint distances for the model fits shown in (C). Keypoint distance is computed
as the Euclidean distance between a data-derived 3D keypoint estimate produced via direct
triangulation and the corresponding point on the mesh.
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Fig. 6 Principal component analysis (PCA) of ArMo pose states
A: Variance explained by each component individually (blue) and cumulatively (orange).
Only the first six components (delimited by the dashed line) are shown in (B), (C), and (D).
B: PCA projections for 12 seconds of example data, showing behavioral features such as high
frequency oscillations in component 3 during running. C: Deviations from the mean pose
in the direction of each component (side view). The solid lines indicate reprojections of the
principle component axis into the 3D skeletal joint coordinate space, and the transluscent
lines indicate the mean pose. D: Same as (C) for top-down view.
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