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SUMMARY

Different olfactory cortical regions are thought to
harbor distinct sensory representations, enabling
each area to play a unique role in odor perception
and behavior. In the piriform cortex (PCx), spatially
dispersed sensory inputs evoke activity in distrib-
uted ensembles of neurons that act as substrates
for odor learning. In contrast, the posterolateral
cortical amygdala (plCoA) receives hardwired inputs
that may link specific odor cues to innate olfactory
behaviors. Here we show that despite stark differ-
ences in the patterning of plCoA and PCx inputs,
odor-evoked neural ensembles in both areas are
equally capable of discriminating odors, and exhibit
similar odor tuning, reliability, and correlation struc-
ture. These results demonstrate that brain regions
mediating odor-driven innate behaviors can, like
brain areas involved in odor learning, represent
odor objects using distributive population codes;
these findings suggest both alternative mechanisms
for the generation of innate odor-driven behaviors
and additional roles for the plCoA in odor perception.

INTRODUCTION

Sensory systems contain multiple internal representations of the

external world. A hierarchy of interconnected areas constructs

these representations by performing sequential transformations

that extract progressively higher-order stimulus features. How-

ever, this ordered flow can branch into parallel streams that

format sensory representations in distinct ways optimized for

different computational and behavioral functions.

In the olfactory system, for example, information is trans-

formed in serial and parallel as it flows from the nose to the

brain. In the main olfactory system of rodents, odors are de-

tected by odor receptors expressed by olfactory sensory neu-

rons (OSNs). Each mature OSN expresses a single receptor

gene and elaborates an axon that innervates a single glomerulus

(of thousands) within the main olfactory bulb (OB); the specific

glomerulus innervated by a given OSN is determined by the re-

ceptor expressed by that OSN (Axel, 1995). The convergence

of OSN axons into glomeruli both organizes odor information
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into receptor-specific channels and sorts those channels in

space based, at least in part, upon the behavioral significance

of the odor: innately relevant odors (e.g., the fox odor trimethylth-

iazoline [TMT], the spoiled food odor 2-methylbutyrate, and

aversive and appetitive amines) activate glomeruli within dorsal

and dorsolateral bulbar subdomains, while more ‘‘neutral’’ odors

are encoded by glomeruli distributed across the bulb surface

(Dewan et al., 2013; Kobayakawa et al., 2007; Mori and Sakano,

2011).

This singular (albeit tessellated) streamof olfactory information

is then projected forward by neurons called mitral and tufted

(MT) cells. MT cells innervate multiple higher brain targets in par-

allel, each of which is thought to play a unique function in odor

perception and behavior (Haberly, 2001). Perhaps the best stud-

ied of these is the piriform cortex (PCx), which both neural re-

cordings and functional experiments have implicated in various

forms of odor learning. For example, disruption of PCx function

interferes with retrieval of odor memories, whereas optogenetic

actuation of ensembles of PCx neurons can substitute for odor

cues in an odor-context pairing task (Choi et al., 2011; Sacco

and Sacchetti, 2010). In contrast, the posterolateral cortical

amygdala (plCoA), which also receives inputs from MT cell

axons, is thought to mediate innate odor-driven behaviors, as

plCoA neurons are necessary and sufficient for innate appetitive

and avoidance responses to specific monomolecular odorants

(Root et al., 2014).

How are sensory representations within PCx and plCoA orga-

nized to support their distinct behavioral functions? The PCx re-

ceives MT cell axons that are splayed across the surface of the

PCx in a distributive pattern. This spatial mixing of inputs from

all glomeruli, together with broad associational connectivity

intrinsic to the PCx, has two main consequences: individual

PCx pyramidal neurons can represent information about discon-

tinuous subsets of odor space (with respect to chemical struc-

ture, behavioral meaning, and glomerular identity), and both

monomolecular odorants and odor mixtures activate distributed

and overlapping ensembles of PCx neurons whose activity sig-

nifies odor identity (Ghosh et al., 2011; Illig and Haberly, 2003;

Miyamichi et al., 2011; Sosulski et al., 2011; Stettler and Axel,

2009). The PCx therefore represents odor objects through a pop-

ulation code, in which the coordinated activity of groups of neu-

rons affords downstream brain regions more information about

the sensory environment than possible if these neurons were

considered individually.

Although neurons in plCoA have been shown to respond to

odorants, their tuning properties have not yet been defined
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(Bergan et al., 2014; Govic and Paolini, 2015; Root et al., 2014;

Staples et al., 2008). The plCoA receives input from both the

OB and the PCx, and harbors intrinsic associational connections

that distribute information locally (Price, 1973; Schwabe et al.,

2004). However, in contrast to the PCx, the axonal inputs from

the OB to the plCoA target patch-like subdomains whose loca-

tion is glomerulus specific and stereotyped from animal to ani-

mal, suggesting that connections between MT cells in the bulb

and recipient cells in the plCoA are hardwired during develop-

ment (Sosulski et al., 2011). The plCoA is also preferentially

innervated by glomeruli in the dorsal OB, raising the possibility

that sensory responses to innately relevant cues may be over-

represented in the plCoA (Miyamichi et al., 2011). Furthermore,

immediate early gene staining has suggested that aversive

odors (including TMT, isopentyl amine, and 4-methylthiazole)

evoke activity in a spatially distinct subset of plCoA neurons

that do not respond to appetitive odors (such as 2-phenylethanol

[2-PE]) (Root et al., 2014).

These observations have suggested a working model in which

the plCoA mediates innate odor-driven behaviors through hard-

wired and spatially segregated labeled lines that couple informa-

tion from the periphery to circuits that drive innate behaviors. In

principle, neurons participating in labeled lines in the plCoA could

exhibit specific sensory responses to innately relevant odors

(e.g., TMT and 2-PE), behaviorally relevant chemical classes

(e.g., thiazoles and amines), or odor valences (e.g., appetitive

or aversive), as each of these response types could be meaning-

fully used to generate an appropriate behavioral response.

However, because no large-scale recordings of the plCoA

have been previously performed, it is unclear how odor repre-

sentations are functionally organized in the plCoA to support

the generation of innate behaviors. To address this question,

here we systematically record neural responses in plCoA to a va-

riety of behaviorally relevant and neutral monomolecular odors

and odor mixtures. We find that odor-driven responses in plCoA

strikingly resemble those apparent in PCx, suggesting that odor

objects are represented in the plCoA via a population code. Like

their counterparts in PCx, the responses of individual plCoA

neurons convey little reliable information about odor identity,

chemical class, or odor valence. Rather, the plCoA represents

sensory information through the activity of neural ensembles

that can signify odor identity and odor concentration. These find-
Figure 1. The plCoA Exhibits Dynamic and Diverse Odor Responses S

(A) Example raster plots of odor responses (y axis = 10 trials) in plCoA and PCx.

(B) Spontaneous firing rate distributions in plCoA (535 neurons, red) and PCx (3

p < 0.001, Wilcoxon rank-sum test).

(C) Odor responsemagnitude histogram (firing rate change during the first second

plCoA, 3.9 spikes/s; median PC, 5.7 spikes/s; p < 0.001, Wilcoxon rank-sum tes

excitatory (E) and inhibitory (I) responses in plCoA (red) and PCx (blue).

(D) Average response fraction of neurons in plCoA (red) or PCx (blue) exhibiting ex

versus 11% in PCx; inhibitory responses, 3% in plCoA versus 8% in PCx; p < 0.

(E) Mean (±SEM) baseline and odor-evoked firing in plCoA (red) and PCx (blue) d

(F) Phase-intensity plots illustrating the distribution of the phase and firing rate of

onset (baseline) and of the first cycle after onset (response). The plot angle indica

and color map indicates the proportion of cell-odor pairs exhibiting any given ph

concentration of the data around themean (arrow length, where perfect concentra

the respiration cycle during odor responses (p < 0.01, Raleigh’s uniformity test).

Error bars = SEM.
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ings argue that odor-driven innate behaviors can be supported

by a distributive mode of information coding in the olfactory

system.

RESULTS

To characterize responses in plCoA neurons, awake head-fixed

mice were exposed to different odors as extracellular records

were obtained using four-shank silicon probes targeted to

layers II and III (Figures S1A–S1C, available online). As a control,

similar recordings were obtained in independent animals from

neurons in the anterior PCx. Naive mice without any prior odor

training or reward association were exposed to four distinct

odor panels, which included appetitive, aversive, and neutral

monomolecular odorants as well as natural odor mixtures (see

STARMethods for odor panel definitions); three panels included

the aversive odor TMT and the appetitive odor 2-PE, whose

behavioral effects depend upon the activity of specific neurons

in plCoA (Root et al., 2014). Mice were free to run on a treadmill

during the experiment, and exhibited both reliable odor-specific

locomotor responses during recordings and typical approach

and avoidance behaviors to innately relevant odors after the

recording session (Figures S1D and S1F). Spike sorting identi-

fied a total of 1,080 single units from the plCoA of 39 mice and

868 single units from the PCx of 31 mice, yielding a total of

23,492 cell-odor pairs.

Raster plots in Figure 1A illustrate typical patterns of activity

observed in neurons in the plCoA and PCx before, during, and af-

ter thepresentationofdistinctmonomolecular odorants.Baseline

levels of neural activity were different in these two brain regions,

with the plCoA exhibiting significantly lower firing rates than the

PCx (Figure 1B). While a substantial fraction of cells in PCx ex-

hibited spontaneous firing rates of 5 Hz or more, few such highly

spontaneously active cells were observed in plCoA (Figure 1B).

Despite this difference in spontaneous firing rates, the overall

character of neural responses to odors was remarkably similar in

both brain regions. Odor presentation modulated the activity of

plCoA and PCx neurons, with most responses being excitatory

(Figures 1C and 1D). Inspection of odor-evoked responses re-

vealed a diversity of temporal response patterns, varying from

conventional odor-locked excitation to ‘‘off’’ responses in which

neurons responded to the cessation of odor delivery (Figure 1A).
imilar to Those Observed in PCx

Odors were presented for 2 s (bar).

39 neurons, blue; median plCoA, 0.52 spikes/s; median PCx, 1.32 spikes/s;

of odor presentation) in plCoA (red) and PCx (blue). Median response amplitude

t. Inset: average baseline firing rates (±SEM) for neurons exhibiting significant

citatory (E) or inhibitory (I) odor responses (excitatory responses, 6% in plCoA

001, c2 test).

uring the inspiratory (i) or expiratory (e) phases of the sniff cycle.

neuronal activity relative to the onset of the last respiration cycle before odor

tes peak phase, radius indicates peak firing rate (spikes/s, maximum is 15 Hz),

ase and rate. Insets: the mean phase of the population (arrow angle) and the

tion = 1). Themean phase in both brain areas is not uniformly distributed across
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Figure 2. Similar Reliability of Odor-Evoked Responses in plCoA and PCx Regardless of Odor Identity or Valence

(A)Histogramdepicting theprobability of anexcitatory responseout of ten trials (seeSTARMethods).Openbars (red, plCoA; blue, PCx)depict the fractionof cell-odor

pairswithagivenexcitatory responseprobability; filledbars representonly thosecell-odorpairswhoseresponsesareconsideredsignificantbyauROCanalysis.Black

dotted lines, distribution of false-positive responses in absence of odor presentation; note that this rate reflects the level of spontaneous activity in each brain area.

(B) Response probabilities for cell-odor pairs with a significant excitatory response (as assessed by auROC analysis) for five neutral, aversive, and appetitive

odors; no significant differences were observed (three factors: valence, odor identity, and area; three-way ANOVA).

(C) Left: grand averages of peri-stimulus time histograms of excitatory responses to isoamyl acetate/neutral (green), TMT/aversive (red), and 2-PE/appetitive

(blue). Right: same as left, with all odors considered, grouped by valence: neutral (green), aversive (red), and appetitive (blue). Odor period (black) is demarked.

(D) Spike count change during presentation of five neutral, aversive, and appetitive odorants for those neurons that had an excitatory response. Firing rate was not

significantly modulated by the innate valence of odors (three factors: valence, odor identity, and area; p < 0.05 only for difference between areas, three-

way ANOVA).

Error bars = SEM.
Sorting of neurons into clusters based upon the dynamics of

their odor responses revealed that the distribution of response

dynamics was similar in the plCoA and PCx, as was the average

response onset (data not shown); furthermore, in both areas

odor-driven responses were modulated by respiration (Figures

1E and 1F) (Litaudon et al., 2003; Miura et al., 2012). Spectral

analysis of the local field potential in the plCoA revealed odor-eli-

cited beta activity, which is characteristic of sensory responses

in PCx and other olfactory cortical areas (Figures S2A–S2C) (Ne-

ville and Haberly, 2003; Poo and Isaacson, 2009). However, the

density and amplitude of odor responses were lower in plCoA

than in PCx, and the peak of odor responses in plCoA was phase

delayed with respect to PCx (Figures 1D, 1G, S3A, and S3B).

These differences, together with the lower observed sponta-

neous activity in plCoA, suggest that plCoA neurons may have

lower membrane excitability than PCx neurons, or may be sys-

tematically subjected to lower levels of excitation and/or greater

levels of inhibition.
Response Reliability Is Similar in plCoA and PCx
Given that projections from a single glomerulus to the plCoA

are not dispersed but spatially clustered—and that plCoA neurons

may therefore be capable of averaging signals from multiple MT

cells representing the sameglomerulus—it is possible that individ-

ual plCoA neurons respond to odors more reliably than those in

PCx;such increased reliability, in turn, couldenablesmall numbers

of plCoA neurons to accurately convey the presence of an innately

relevant cue on each trial. We therefore assessed the reliability of

responses in both plCoA and PCx on a trial-by-trial basis, using

a threshold to identify neurons that responded to a given presen-

tation of odor. Individual neurons in PCx responded during the

odor exposure period on a subset of trials, although many of the

‘‘responses’’ were attributable to ongoing spontaneous activity;

while single neurons did not reliably report the presence of a given

odorant on every trial, a subset of neurons responded to individual

odors on half of the trials or more (Figure 2A). The observed distri-

bution of response reliabilities in plCoAwas indistinguishable from
Neuron 93, 1180–1197, March 8, 2017 1183



au
R

O
C

 o
f 

E
xc

ita
to

ry
 R

es
po

ns
es

A B

C D

E

I

J

NEUTRAL NEUTRALAVERSIVE AVERSIVEAPPETITIVE APPETITIVE
0

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

auROC

F
ra

ct
io

n 
of

 N
eu

ro
ns

auROC

F
ra

ct
io

n 
of

 N
eu

ro
ns

0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

Lifetime Sparseness Lifetime Sparseness

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Inhibitory OdorsExcitatory Odors

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

po
rt

io
n 

of
 N

eu
ro

ns

0 10 155

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 155

he
p

ta
no

l
m

-c
re

so
l

2-
M

B
 a

ci
d

b
ut

an
ed

io
ne

g
er

an
io

l

2-
P

T

p
ea

nu
t b

ut
te

r

M
M

B

fe
m

al
e 

ur
in

e

IP
A

IA
A

p
he

ne
to

l
p

en
ta

na
l

2-
P

E
TO

H

TM
T

he
p

ta
no

l
m

-c
re

so
l

2-
M

B
 a

ci
d

b
ut

an
ed

io
ne

g
er

an
io

l

2-
P

T

p
ea

nu
t b

ut
te

r

M
M

B

fe
m

al
e 

ur
in

e

IP
A

IA
A

p
he

ne
to

l
p

en
ta

na
l

2-
P

E
TO

H

TM
T

plCoA
PCx

neuron I.D. neuron I.D.

ne
ur

on
 I.

D
.

ne
ur

on
 I.

D
.

Signal Correlation

P
ro

ba
bi

lit
y 

D
en

si
ty

F
un

ct
io

n

Noise Correlation
-1 -0.5 0 0.5 1

0

1

2

3

4

-1 -0.5 0 0.5 1
0

0.5

1

1.5

Chemical Classes

F
ra

ct
io

n 
of

 R
es

po
ns

iv
e 

N
eu

ro
ns

Valence Classes

H

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

auROC - Valence

AversiveAppetitive

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 + 
ODORS
OF THE 
SAME 
CLASS

2 + 
ODORS

OF 
DIFFER-

ENT
CLASSES

2 + 
ODORS
OF THE 
SAME 
CLASS

2 + 
ODORS

OF 
DIFFER-

ENT
CLASSES
co

rr
el

at
io

n

0

1

-1

F

G

one
class

two
classes

three
classes

four
classes

five
classes

Fraction of Neurons
0 0.2 0.4 0.6 0.8 100.20.40.60.81

one
class

two
classes

0 0.2 0.4 0.6 0.8 100.20.40.60.81

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

15 10 15105 1 51

F
ra

ct
io

n 
of

 N
eu

ro
ns

0.5

1

0

0.5

1

0.5

1

0

0.5

1

10 5 1 1051

Number of Activating Odors

F
ra

ct
io

n 
of

 N
eu

ro
ns

(legend on next page)

1184 Neuron 93, 1180–1197, March 8, 2017



that inPCx, both in general andwhenneutral, appetitive, and aver-

sive odorants were independently compared (Figures 2A and 2B).

In addition, on those trials in which a given neuron responded, the

magnitude of the response did not vary systematically with odor

valence (which here we take as synonymous with appetitive or

aversive) in either PCx (as has been previously shown) or plCoA

(Figures 2C and 2D) (Stettler and Axel, 2009).

Consistent with these findings, the average Fano Factor (spike

count variance divided by the mean) of plCoA and PCx neurons

both before and during odor exposure was significantly above

one (the value expected for a Poissonian process), indicating

substantial across-trial variability of spike counts when assessed

using this threshold-free metric; this variability fell during the

odor presentation, as has been previously observed (Churchland

et al., 2010; Miura et al., 2012), and did not differ based upon

odor valence (Figures S4A and S4B; data not shown). Impor-

tantly, throughout the baseline, odor response, and recovery

periods the Fano Factor was statistically indistinguishable be-

tween the plCoA and PCx. Although response habituation can

contribute to observed across-trial variability—and the number

of odor-evoked spikes in both plCoA and PCx decreased across

trials (Figure S4C)—odor-responsive neurons were only slightly

less likely to respond at the end of the experiment than at the

beginning, suggesting that the across-trial response variability

was not dominated by habituation effects (Figure S4D).

Taken together, these data demonstrate that the across-trial

variability that characterizes responses in awake PCx is present

and qualitatively similar in the plCoA, and that the degree of

this response variability does not depend upon the innate behav-

ioralmeaning of the odor. These observations further demonstrate

that (under naive conditions) odor identity is not generally repre-

sented inplCoAvia reliablefiringofneurons that faithfully represent
Figure 3. plCoA and PCx Neurons Respond to Limited Subsets of Odo

(A) Histograms of the discriminability of olfactory responses in plCoA (red) and PC

perfectly discriminable excitatory response and 0 indicates a perfectly discrimina

Odor response discriminability in plCoA and PCx was similar (p > 0.05, permuta

(B) auROCs of significant responses (mean ± SEM) to five neutral, aversive, and ap

modulated by the innate valence of odors (three factors: valence, odor identity, a

(C) Left: number of monomolecular odorants that significantly activate a given neu

odor; 14% of plCoA neurons and 11% of PCx neurons activated by only one odor

and 29% of PCx neurons inhibited by at least one odor; 9% of plCoA neurons and

tuning breadth of neurons was not statistically different between areas (Kolmogo

(D) Lifetime sparseness (1 = perfectly odor selective, 0 = completely non-selectiv

(E) Fraction of neurons activated by two ormore odors of the same chemical or val

classes in plCoA (red) and PCx (blue).

(F) Left: fraction of neurons that respond to the indicated number of chemical class

distributions of the number of odors to which each neuron responded in associat

odorant respond to a single odor, suggesting they may not be ‘‘class’’ specific a

(G) Similar to (F) but with respect to odor valence (appetitive or aversive).

(H) Odor valence discriminability of plCoA (red) and PCx (blue) neurons; dark c

mutation test). No differences in the significant auROCs between the plCoA and

(I) Probability density function of signal (left) and noise (right) correlations between

and noise correlations observed after shuffling odor labels indicated with the dash

different experiments using the same odor panel of 15 monomolecular odorants.

experiment. Observed distributions were not significantly different (t test; mean

relation, plCoA = 0.02 ± 0.003, PCx = 0.04 ± 0.007).

(J) Correlation matrices (Pearson’s r) of plCoA (left panels) and PCx (right panels) o

clustering (metric, Pearson’s r; see STAR Methods) as shown by the dendrogram

responsive neurons.

Error bars = SEM.
the presence of a given cue on every trial; our results suggest that

odor identity may instead be represented during single trials using

a population code, as pooling information frommultiple individual

neurons could be used to reliably identify odors on each trial.

Individual Neurons in plCoA and PCx Exhibit Similar
Odor Tuning Properties
Neurons that participate in population codes can be broadly

tuned to odor cues, narrowly tuned, or a mixture of both, while

neurons that are part of labeled lines respond to a limited subset

of odor space. We therefore characterized and compared the

odor-tuning properties of individual neurons in plCoA and PCx.

To identify neurons whose responses distinguish the presence

of a specific odor from background when all trials are consid-

ered, we performed an area-under-the-receiver-operator-curve

(auROC) analysis. Consistent with the results observed by

thresholding single-trial responses, the average auROCs of

odor-responsive plCoA and PCx neurons (which can be taken

as a surrogate for ‘‘responsiveness’’ as it incorporates both over-

all reliability and response magnitude) were similar regardless of

odor identity or valence (Figures 3A and 3B).

Neurons identified as responsive via the auROC analysis in

plCoA and PCx shared similar tuning breadths—most individual

neurons in both areas were excited (or inhibited) by a limited

number of specific odors, although neurons could be identified

that responded to many odorants (Figures 3C and 3D). This dis-

tribution of observed tuning breadths was not different between

the plCoA and PCx, and was not dissimilar from the tuning

breadth distribution observed previously in the PCx of awake

mice confronted with novel odors (Zhan and Luo, 2010). Neither

plCoA nor PCx neurons exhibited enriched responses to specific

chemical classes (e.g., alcohols, aldehydes, amines, phenols,
r Space

x (blue) as assessed by response auROC (in which an auROC of 1 indicates a

ble inhibitory response; see STAR Methods). Filled bars, significant responses.

tion test).

petitive odors in plCoA (red) and PCx (blue). Response discriminability was not

nd area; three-way ANOVA).

ron (29% of plCoA neurons and 32% of PCx neurons activated by at least one

out of 15). Right: same as left, but for odor suppression (16% of plCoA neurons

13% of PCx neurons inhibited by only one odor). The excitatory and inhibitory

rov-Smirnov test).

e) distributions of plCoA (red) and PCx (blue) neurons.

ence class, compared to the fraction activated by two ormore odors of different

es. Black dotted line, null distribution obtained by reshuffling odor labels. Right:

ed panel on the left. Note that most of the neurons that respond to one class of

s they do not generalize across odors within a class.

olored dots represent discriminability greater than expected by chance (per-

PCx were observed (permutation test).

neurons that responded to at least one odor in plCoA (red) and PCx (blue); signal

ed lines. Signal correlations were computed between all pairs of neurons from

Noise correlations were computed only between neurons recorded in the same

signal correlation, plCoA = 0.005 ± 0.003, PCx = 0.00025 ± 0.004; noise cor-

f the tuning curves for individual neurons. Neurons are ordered via hierarchical

to the right. Bottom panels are for all neurons; top panels include only odor-
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Figure 4. Decoding of Odor Identity from plCoA and PCx Population Activity

(A) Mean accuracy of linear decoders trained to discriminate 15 different monomolecular odors (see STAR Methods). Dashed curves indicate performance after

shuffling odor labels for all trials.

(B) Confusion matrices based upon the linear classifier in (A) reveal no systematic confusions between odors.

(C) Distribution of mutual information about odor identity in individual neurons for 15 monomolecular odors in plCoA and PCx (see STAR Methods; no significant

differences observed using aWilcoxon rank-sum test). The number indicated on top is the information content of the population; square box indicates the mean.

(D) Distribution of the pairwise correlation coefficients (Pearson’s r) between ensemble neural representations (using the average response for each neuron) for

15 odors in plCoA (red) and PCx (blue). Control distributions (dashed lines) were obtained by reshuffling odor labels 500 times for each neuron.

(legend continued on next page)
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and thiazoles) or odor valences. For example, neurons in both

the plCoA and PCx were much less likely to respond to multiple

odors of the same class than of different classes (either with

respect to chemical class or valence; Figure 3E), and the distri-

bution of number of chemical classes (or valence classes) to

which a given neuron responded was neither statistically distin-

guishable between the plCoA and PCx, nor was it greater than

that expected by chance (Figures 3F and 3G). Finally, only a

small (and similar) number of neurons in plCoA and PCx were

capable of specifically discriminating odor valence (as assessed

by auROC analysis; Figure 3H). Taken together, these results

demonstrate that individual plCoA and PCx neurons generally

respond to limited subsets of odor space, and that there are

not proportionally more neurons that respond to specific odor

categories in the plCoA than there are in the PCx.

This analysis of categorical responses requires a priori spec-

ification of the categories; however, it is possible that neurons

in the plCoA or PCx respond to stereotyped groups of odors

(potentially in a manner relevant to innate behavior) based

upon properties other than chemical class or odor valence.

We therefore asked whether neurons exhibited similar tuning

profiles (‘‘signal correlations’’) or similar trial-to-trial variability

about the mean of the response (‘‘noise correlations’’), which

can reflect shared inputs (Averbeck et al., 2006; Cohen and

Kohn, 2011; Pouget et al., 2000). As had been shown previously,

neural responses in PCx to multiple odors exhibited both low

signal and noise correlations (Figure 3I) (Miura et al., 2012).

Odor-responsive neurons within the plCoA also exhibited

near-zero signal and noise correlations, whose distribution

was indistinguishable from that expected by chance (Figures

3I and 3J). These findings demonstrate that the tuning proper-

ties of plCoA neurons are highly decorrelated, and therefore

are not enriched for responses to subsets of odor space; this de-

correlation further suggests that plCoA neurons (like those in

PCx) may be well suited to participate in population codes for

odor identity.

Population Coding for Odor Identity in Both plCoA
and PCx
To directly assess whether population codes enable plCoA and

PCx to efficiently represent sensory information, we asked how

well odor identity, chemical class, or valence could be decoded
(E) Classification performances obtained after sorting neurons based on their inf

(F) Classification performances in which populations of 90 plCoA and PCx neuro

dashed lines indicate the performance of the most informative single neurons in p

by removing the two highly informative neurons depicted in Figure 1C, followed

(G) Classification performances obtained after sorting neurons based on their life

each step was equal for both plCoA and PCx (total number of neurons at each li

(H) Linear discriminator accuracies (as in A) of the chemical class of an odor, plot

15 odors were grouped in five classes based on their main chemical moiety (e.g.,

Shaded circles indicate the mean accuracies obtained after randomly grouping t

experiment. The performances for populations of 70, 80, and 90 plCoA neurons

(I) Distribution of chemical class information in individual neurons across 15 odor

with the box indicating the mean (no significant differences, Wilcoxon rank-sum

(J) Pairwise correlation between population vectors representing two odors belon

are reported and whiskers represent the interquartile range (p < 0.05, t test).

(K–M) Like (H)–(J) but with respect to odor valence.

Error bars = SEM.
from ensembles of neurons in each area. Decoders were instan-

tiated using a support vector machine with a linear kernel, which

acts as a classifier whose performance is a surrogate for the abil-

ity of neural populations to encode information about stimulus

features like odor identity; we favored this linear classification

approach because of its technical simplicity and biological

plausibility. Linear classifiers were trained using single-trial re-

sponses of pseudo-populations of neurons pooled from several

individual animals, and then tested using held-out data (with the

training and test data randomly selected in 9:1 proportions, and

reported accuracies reflecting the average performance of 500

such classifiers for every data point; see STARMethods for clas-

sification details).

We first asked if decoders could correctly identify individual

odors (from a set of 15monomolecular odors) based upon the re-

sponses of randomly chosen neurons from plCoA and PCx, and,

if so, how classification performance changed as the decoder

gained access to progressively more neurons in each area.While

classifiers trained with small numbers of neurons (either from

plCoA or PCx) were ineffective at identifying odors, increasing

the number of neurons in the population improved the perfor-

mance of both plCoA and PCx classifiers (Figure 4A). No system-

atic confusions between odors were observed in the classifier

predictions (Figure 4B). The rate at which classifier performance

improved as individual neurons were added to the PCx and

plCoA classifiers was nearly identical; this observation suggests

that neurons fromplCoA and PCxmight be interchangeable from

the perspective of a decoder, and therefore encode information

about odor identity in a similar manner. Consistent with this pos-

sibility, a classifier built using randomly selected neurons from

both PCx and plCoA exhibited similar performance characteris-

tics to classifiers built using neurons from plCoA or PCx sepa-

rately (Figure 4A). These findings did not depend on the specific

implementation of the classifier, as classifiers using a non-linear

kernel or least-squares multiple regression gave qualitatively

similar results (Figures S5A and S5B).

Consistent with the nearly identical performance of decoders

trained using plCoA or PCx ensembles, the mean amount of

information encoded by each plCoA and PCx neuron was similar

(Figure 4C). Correlations between individual neurons (which

on average were near zero; see Figures 3I and 3J) did not

affect the ability of classifiers to distinguish odors, as classifier
ormativeness about odor identity (highest to lowest, as in C).

ns were systematically depleted of neurons in order of their informativeness;

lCoA (red) and PCx (blue). Note the sharp initial drop in accuracy in PCx caused

by the equalization of the slopes of the decrementing curves.

time sparseness (highest to lowest). Note that the number of neurons added at

fetime sparseness indicated within parentheses).

ted as a function of the size of plCoA (red) and PCx (blue) populations. In total,

alcohols, aldehydes, amines, phenols, and thiazoles). Circles indicate means.

he 15 odors in 5 arbitrary classes; this represents chance performance in this

are just above the 97.5th percentile of the controls.

s in plCoA and PCx, with total population information indicated at the top, and

test).

ging to the same chemical class or to two different chemical classes. Medians
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performance was nearly identical before and after elimination of

signal and noise correlations (Figure S5C). Furthermore, pairwise

comparisons of odor representations in plCoA and PCx revealed

similar (and near chance) levels of ensemble correlation, a

feature that likely supports classifier performance (Figure 4D).

Importantly, the observed correlation distributions were similar

in plCoA and PCx, consistent with odor-evoked neural ensem-

bles in each of these areas having an equivalent capacity to

distinguish odors.

Because randomly selecting the neurons used for classifica-

tion might understate the relative influence of particularly infor-

mative neurons, we also built a series of classifiers in which the

most informative individual neurons (as defined by their informa-

tion content in Figure 4C) were provided to the classifier first.

This analysis demonstrates that small numbers of neurons in

both areas can drive classification performance (and hence,

odor representations are compact), but that even the most

informative neurons contribute fractionally to the ability of the

classifier to disambiguate odor identity; importantly, nearly all

of the most informative neurons are broadly tuned (Figure 4E;

data not shown). Conversely, removing neurons from a classifier

in the order of their informativeness only modestly affected clas-

sifier performance, consistent with the capacity of plCoA and

PCx ensembles to discriminate odors even when composed of

relatively less informative neurons (Figure 4F).

Classifiers in which all discriminative information is provided

by labeled-line neurons should not benefit from incorporating

additional broadly tuned neurons into the population; thus,

observing improvement in classifier performance when broadly

tuned neurons are included in the population would support

the argument that important information is not passed entirely

through labeled lines composed of specifically tuned neurons.

We therefore also built classifiers in which neurons were added

in order of tuning breadth, with those neurons that exhibited

the highest lifetime sparseness (i.e., are the most odor selective)

fed to the classifier first. The performance of plCoA- and PCx-

based classifiers was nearly identical for all numbers of included

neurons (Figure 4G). Critically, incorporating more broadly tuned

neurons monotonically increased odor prediction accuracy at a

similar rate in both plCoA- and PCx-based classifiers; this result

directly demonstrates that both plCoA and PCx harbor popula-

tion codes for odor identity.

Finally, we asked how the performance of classifiers built with

plCoA and PCx neurons compared to the performance of classi-

fiers built with neurons that respond selectively to a single odor,

as would be expected for labeled lines for odor identity. We

therefore synthetically generated a population of labeled-line

neurons from our recording data by replacing the responses of

each neuron to all but its preferred odor with baseline levels of

activity. As shown in Figure S5D, classifier performance using

data derived from plCoA and PCx neurons is higher than that

observed for those same neurons after converting them into syn-

thetic labeled lines; this enhanced performance likely reflects the

ability of broadly tuned neurons to more parsimoniously convey

information about odor identity than labeled lines that are tuned

to a single odorant. Taken together, these data strongly suggest

that PCx and plCoA share similar modes of population-based

odor identity coding.
1188 Neuron 93, 1180–1197, March 8, 2017
Population Responses to Both Purified Odors and
Natural Mixtures Are Similar in Both plCoA and PCx
Specific chemical features of odorants are detected by odor re-

ceptors, which induce patterns of odor-evoked activity in OB

glomeruli. However, to date there is little evidence that ensem-

bles of neurons in the mouse PCx are organized according to

either lower-order (i.e., chemical features) or higher-order (i.e.,

odor valence or innate behavioral meaning) olfactory categories;

rather, PCx neural populations are thought to encode odor

identity in a manner that maximally separates representations

of encountered odors (Leinwand and Chalasani, 2011; Wilson

and Sullivan, 2011). If ensembles of plCoA neurons instead

distinguish odor categories (either chemical or behavioral), de-

coding circuits downstream of the plCoA could use this informa-

tion to support the generation of innate patterns of action.

We therefore generated classifiers trained to distinguish the

chemical class to which an odor belonged based upon its main

functional group; as for classifiers for odor identity, the perfor-

mance of classifiers trained to discriminate odor classes mono-

tonically increased as additional neurons were added to the

population in both plCoA and PCx. However, the observed de-

coding accuracy may reflect the ability of a classifier to discrim-

inate any group of odors, regardless of their chemical category.

We therefore generated a null distribution of decoding accuracy

by training classifiers to distinguish any subset of three odors,

which is equal to the number of odors that belong to each

chemical class within our experiment. Classifiers were unable

to distinguish chemical classes using smaller groups of neurons,

although decoders built from larger sets of neurons just ex-

ceeded the statistical threshold for classification (Figure 4H,

compare filled circles to associated shaded circles). Consistent

with these observations, the information content of individual

neurons about odor class in plCoA and PCx was similar (Fig-

ure 4I); furthermore, the correlation distance between odor

representations was near zero, although a modest and statisti-

cally significant difference within and between chemical classes

was observed in both plCoA and PCx (Figures 4J and S5E).

We also used responses to an odor panel composed entirely of

appetitive or aversive odorants to train classifiers to discriminate

odor valence. In neither plCoA nor PCx were populations of neu-

rons effective at distinguishing appetitive versus aversive odor-

ants at a rate above chance (as defined using a null distribution)

(Figure 4K). Indeed, individual neurons in both plCoA and PCx

had similar levels of information about odor valence, and the cor-

relation distances separating odor representations were similar

(and near zero) bothwithin and between valence classes (Figures

4L, 4M, and S5F). These results demonstrate that neural popula-

tions in plCoA and PCx are not better able to discriminate odor

valence than arbitrary, similarly sized groups of odors of mixed

valence, suggesting that information about odor valence is not

privileged at the level of population codes in either brain area.

The characterization of odor representations described above

was performed using odor panels whose constituents were

largely composed of purified monomolecular odors. However,

nearly all odors encountered by mice in the wild are complex

mixtures derived from natural sources. We therefore repeated

both the single-neuron and ensemble-level analyses using natu-

ral odor mixtures, including predator and conspecific urines,
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Figure 5. Similar Encoding for Natural Mixtures in plCoA and PCx

(A) auROCs of responses to 13 natural odor mixtures in plCoA (red) and PCx (blue). Responses were not distinguishable between these areas (two-way ANOVA).

(B) Number of natural odor mixtures that significantly activate (left) or inhibit (right) a given neuron. The excitatory and inhibitory tuning breadth of neurons was not

statistically different between areas (Kolmogorov-Smirnov test).

(C) Probability density function of signal (left) and noise (right) correlations between individual neurons in plCoA (red) and PCx (blue) in response to natural

mixtures. Correlation distribution observed after shuffling odor labels is indicated with the dashed lines.

(D) Left: accuracy of linear decoders trained to discriminate 13 different natural odor mixtures, with classification accuracy after odor label shuffling indicated in

dashed lines. Right: confusion matrices of the classifier shown on the left.

(E) Classifier accuracy at discriminating either valence (left) or ethological class (right) of natural mixtures and controls, computed as in Figures 4H and 4K (see

STAR Methods for assignment of individual mixtures to valences or ethological classes). Shaded circles indicate the mean accuracies obtained after randomly

grouping the odors in arbitrary classes; this represents chance performance in this experiment. The classification of the ethological class of an odor for population

sizes of 20–140 neurons is just above the 97.5th percentile of the control distribution.

(F) Correlation matrices of ensemble odor representations for natural odor mixtures in plCoA and PCx in response to natural odor mixtures; five pseudo-trials

(average of two consecutive trials) of each odor (whose identity is indicated by a letter code, and which are in the same order as the odors in A) are independently

depicted here to reveal cross-trial variability as well as across-odor correlations.

Error bars = SEM.
food-derived odors, and complex odors from natural sources

(like mint, coffee, and lavender; see STAR Methods for valence

and class assignments). As shown in Figure 5, all the key features
of natural odor encoding—including response reliability, tuning

curves, signal and noise correlation, and odor identity and

odor valence classifier performance—were indistinguishable in
Neuron 93, 1180–1197, March 8, 2017 1189
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plCoA and PCx neurons. As was true for chemical classes in

the monomolecular odor experiment, a linear classifier trained

to distinguish the ‘‘class’’ of natural odor (e.g., predator odors,

conspecific odors, food odors, or other) was unable to outper-

form a control classifier except at the largest population sizes

(Figure 5E, right); correlation matrices for the ensemble re-

sponses reveal that representations for most odor mixtures

are decorrelated, although modest cross-correlations were

observed between predator urines and between nut butters in

the plCoA and PCx (Figure 5F). These data demonstrate that

odor encoding of natural mixtures, like that for monomolecular

odors, is similar in both plCoA and PCx.

Multiplexed Representations of Both Identity and
Concentration in plCoA and PCx
Sensory representations in PCx are subject to concentration

normalization, a computation in which increases in odor concen-

tration recruit sublinear increases in the total number of activated

neurons (Stettler and Axel, 2009). In addition, axonal imaging

suggests that changes in odor concentration can have complex

non-linear and non-monotonic effects on the firing patterns of in-

dividual PCx neurons (Otazu et al., 2015). While labeled lines in

principle can signal both odor identity and concentration simul-

taneously (if, for example, firing rate is related to the concentra-

tion of an optimal stimulus), it is not immediately obvious how

non-monotonic relationships between concentration and firing

rate (like those that have been observed in PCx axons) are

consistent with the function of labeled lines for odor identity (Cle-

land, 2010).

To explore how sensory representations evolve in plCoA and

PCx as stimulus concentrations are varied, we exposed mice

to three separate odors delivered at concentrations spanning

five orders of magnitude. One of the chosen odors (2-PE) has

been previously shown to be appetitive, one has been shown

to be appetitive at low concentrations and aversive at higher

concentrations (TMT), and one (isoamylacetate) is a neutral con-

trol (Root et al., 2014; Saraiva et al., 2016). In general, the total

number of responding neurons was stable in response to loga-

rithmic changes in odor concentration in both plCoA and PCx,

with no systematic differences observed between brain areas

(Figure 6A). Most neural responses in both plCoA and PCx

changed as concentrations rose (Figures 6B), but these changes

generally unfolded in a non-monotonic manner regardless of the

odor tested, suggesting that information about odor identity and
Figure 6. Individual plCoA and PCx Neurons Respond Non-linearly and

(A) Proportion of neurons activated by increasing concentrations of three odors

(B) Single-neuron responses to different concentrations of three odors in plCoA

(C) Fraction of plCoA (red) and PCx (blue) neurons that significantly responded

centration variant, the fraction of plCoA and PCx neurons whose responses chan

is also depicted. See STAR Methods for definitions of concentration variance an

(D) Fraction of responsive neurons distinguishing odor identity at each concentra

(E–G) Distribution of mutual information about odor (F), concentration (G), and

concentrations in plCoA and PCx (see STAR Methods; no significant differences

(H–J) Accuracy of linear classifiers using the indicated numbers of neurons at dis

PCx (blue). Dotted line indicates chance performance exhibited after odor label

(K) Principal component plot of ensemble responses (limited to the first three prin

indicated odors across five concentrations (five pseudo-trials/odor; see STAR M

Error bars = SEM.
concentration may be in part decoupled at the single-neuron

level in both brain areas (Figure 6C).

Consistent with this apparent complexity, individual neurons in

both areas can similarly discriminate information about odor

identity, odor concentration, or both (Figures 6E–6G). Interest-

ingly, as odor concentrations increase, the number of neurons

that can discriminate between different odors rises (Figure 6D),

even though the size of the odor-evoked ensembles remains

roughly the same (Figure 6A). This discriminative capacity is

apparent at the population level as well, as linear classification

reveals that neural ensembles from the plCoA and PCx can

discriminate odor concentration, odor identity, and both odor

identity and concentration simultaneously (Figures 6H–6J). Plot-

ting odor representations in principal component space sug-

gests that the overlap between odor representations decreases

as the concentrations of individual odors increases, potentially

providing a basis for simultaneous decoding of identity and con-

centration (Figure 6K).

These data demonstrate that ensembles in both plCoA and

PCx respond similarly to changes in odor concentration (regard-

lessof thebehavioralmeaningof theodor), and that these regions

harbor population-level odor representations that can convey

information about both odor identity and concentration. Further-

more, most individual neurons in both brain areas exhibit non-lin-

earities and non-monotonicities in their responses to stimuli at

different concentrations. While these complex response proper-

ties would not be expected from circuits in which information is

faithfully conveyed using labeled lines, they can be observed in

circuits inwhich population codes representmultiplexed sensory

information (Fusi et al., 2016).

Spatial Isotropy for Odor Responses in plCoA and PCx
Both anatomical and functional data have suggested that neu-

rons in plCoA, unlike those in PCx, are organized in space based

upon the behavioral meaning of the odor to which an animal is

exposed (Miyamichi et al., 2011; Root et al., 2014; Sosulski

et al., 2011). Neurons in which aversive odors induce immediate

early gene expression, for example, appear at least partially

segregated from those activated by appetitive odors along the

anteroposterior axis of the plCoA; such anisotropies could pro-

vide the basis for a coding scheme in which different labeled

lines are distinguished based upon their anatomic position in

the plCoA (Root et al., 2014). We therefore assessed the spatial

distribution of responses across the four shanks of our silicon
Non-monotonically to Increasing Odor Concentrations

(mean and SEM indicated, no significant changes as assessed by c2 test).

and PCx; the auROC of each cell-odor pair response is depicted (color bar).

to distinct concentrations of the same odor. Of those neurons that are con-

ge monotonically or non-monotonically to increasing concentrations of an odor

d monotonicity.

tion in plCoA (red) and PCx (blue).

odor and concentration (E) in individual neurons across three odors and five

, Wilcoxon rank-sum test).

criminating odor identity (H), odor concentration (I), or both (J) in plCoA (red) or

shuffling.

cipal components, capturing approximately 25% of the variance) to the three

ethods).
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Figure 7. Signal Correlations Are Low at Multiple Spatial Scales

(A) Pairwise signal correlation (similarity in odor tuning between pairs of neurons, Pearson’s r) and noise correlations between neurons recorded from the same

and different shanks of the silicon probe (shanks separated by 200, 400, and 600 mm; plCoA, red; PCx, blue) for the indicated odor sets.

(B) Observed fraction of responsive neurons on each shank preferring one of the three odors across five concentrations. The across-shanks slopes (see inset in C)

are not statistically different from zero for each odor at all concentrations (permutation test).

(C) Average slope of the line fit to the distribution of responsive neurons preferring the indicated odor across shanks (see inset) for natural odor mixtures and

monomolecular odorants (p > 0.05, ANOVA).

Error bars = SEM.
probe, which were oriented anteroposteriorly and cover 0.6 mm,

in both plCoA (which is 1.2 mm in the anteroposterior axis)

and PCx.
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In both areas, similar levels of pairwise correlations were

observed between neurons on the same shank and on different

shanks (Figure 7A). Importantly, overt spatial biases in the tuning



of neurons to odorants along the anteroposterior axis of plCoA or

PCx were not observed, as neurons responding to the appetitive

odorant 2-PE and the aversive odorant TMT were isotropically

distributed among all the shanks in single animals across multi-

ple odor concentrations (Figure 7B). Consistent with this finding,

the average slope of the line formed by plotting neural responses

to a given odor across the four shanks (which would be expected

to be zero if no spatial response biases are present; see Fig-

ure 7C, inset) was near zero for all odors (Figure 7C). These re-

sults suggest that neurons do not appear generally clustered in

space in plCoA or PCx based on the valence of the odors to

which they respond.

DISCUSSION

A major goal of sensory neuroscience is to understand how

internal representations of the external world enable perception

and behavior. Within the OB, the first waystation for olfactory in-

formation in the brain, the receptive fields of individual odor re-

ceptors are organized into segregated glomerular information

channels (Axel, 1995). This discretized odor representation is

then reformatted (via spatially dispersed inputs) into a radically

different form within the PCx, where the activity of spatially

interwoven but highly decorrelated ensembles of neurons repre-

sents odor identity (Illig and Haberly, 2003; Miura et al., 2012;

Stettler and Axel, 2009). This representational mode is thought

to enhance the discriminability of odor objects in the environ-

ment (regardless of their specific chemical constituents) and to

facilitate various forms of odor learning (Choi et al., 2011; Sacco

and Sacchetti, 2010). The plCoA, in contrast, has been function-

ally implicated in the generation of innate olfactory-driven behav-

iors and receives hardwired inputs from the bulb, suggesting that

it harbors labeled lines directly coupled to specific behavioral

output centers (Root et al., 2014; Sosulski et al., 2011).

Here we show that sensory responses in plCoA are organized

in a manner that strikingly resembles that apparent in PCx. Indi-

vidual neurons in both PCx and plCoA exhibit similar odor

response reliability and dynamics; odor tuning properties; signal

and noise correlations; and information content about odor iden-

tity, chemical class, and odor valence. Furthermore, activated

neural ensembles in both plCoA and PCx are almost identically

decorrelated, and have a similar capacity to encode information

about odor identity and odor concentration. Finally, at least

within the level of resolution of our silicon probes (about half

the total width of the plCoA in the anteroposterior axis), there

is no apparent spatial order to the tuning properties of neurons

within either plCoA or PCx. These findings suggest that the

plCoA, like the PCx, uses a distributed population code to create

discriminable and holistic representations for odor objects in

the environment. This representational strategy emphasizes

the distinctions between different odor objects, rather than any

similarities those odor objects may have with respect to

higher-order chemical, perceptual, or behavioral features like

chemical class or odor valence.

How, then, might a population code in the plCoA support the

generation of innate odor-driven behaviors? One extreme model

posits that the neurons that decode representations in plCoA do

so using precisely balanced, genetically programmed synaptic
weights (i.e., there is a hardwired population code; Figure 8A).

In this model, highly refined and innately specified patterns of

connectivity between populations of plCoA neurons and decod-

ing neurons substitute for both the narrow tuning properties and

the anatomic segregation that traditionally characterize labeled

lines, enabling the plCoA to connect information about specific

odors to defined innate behaviors. Because each neuron within

plCoA contains relatively low information content about odor

identity, in this model decoding neurons would require access

to many plCoA neurons in parallel; furthermore, for this hardwir-

ing to mediate stimulus-behavior relationships that are invariant

from animal to animal, the neurons that participate in the code for

any given odor or odor category would have to (at some point) be

genetically marked to allow for the generation of appropriate

connectivity.

At the other extreme, rare odor- or category-specific neurons

in the plCoA may mediate innate odor-driven behaviors by

hardwired connections to decoders; in other words, these

specifically tuned neurons may represent classic labeled lines

embedded within a neural structure that appears to generally

represent odor identity using a population code (Figure 8B).

These neurons may have privileged access to specific decoding

circuits in known (and behaviorally relevant) plCoA targets like

the medial amygdala and the olfactory tubercle (although the

PCx also innervates both those targets directly) (Agustı́n-Pavón

et al., 2014; Keshavarzi et al., 2015; Li and Liberles, 2015; Nove-

jarque et al., 2011; Ubeda-Bañon et al., 2007). In our recordings,

we were unable to identify a statistical excess of such neurons;

nevertheless, our experiments cannot definitively rule out the

possibility that labeled lines, built from such neurons, exist in

plCoA. It is important to note that in this embedded labeled-

linemodel, the function of the bulk of the neurons in plCoA, which

respond either to general odors, or to combinations of general

and innately relevant odors, is unexplained.

Although in principle the plCoA could mediate many distinct

types of odor-driven innate behaviors (such as feeding or

aggression), the only innate behaviors definitively assigned to

plCoA thus far are attraction and aversion, which themselves

can be highly diverse in form. Recent data demonstrate that

nearly all odors elicit simple approach or avoidance to some de-

gree in mice, with a few odors (like TMT, female urine, and 2-PE)

driving stronger (but still relatively modest) biases (Kermen et al.,

2016; Root et al., 2014; Saraiva et al., 2016; Wiltschko et al.,

2015). These observations, taken with the results reported

here, suggest a third model, one in which the plCoA can both

innately and flexibly assign odors to some degree of behavioral

attraction or avoidance (Figure 8C).

In this model, plCoA neurons each fractionally contribute to

attraction or avoidance behavior (perhaps through differential

access to downstream effector circuits). Under naive conditions,

the combined effect of distributed afferents from PCx and subtly

biased hardwired connectivity from the OB would allow odors to

recruit decorrelated plCoA ensembles that could nevertheless

specify the degree to which a given odor was appetitive or

aversive. However, during odor learning, specific synapses be-

tween PCx and plCoA neurons (depending on whether those

neurons were ‘‘appetitive’’ or ‘‘aversive’’) could be altered, allow-

ing the strength of attraction or avoidance associated innately
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Figure 8. Models for Decoding Innately Relevant Odor Information in Cortical Amygdala

Three models for the generation of innate behaviors by the plCoA in response to odors. Neurons have the tuning properties indicated by the legend on the right.

The assigned behavioral meaning of neurons is indicated with external circles (appetitive, green; aversive, red).

(A and B) Models represent two extremes: in (A), odor identity is decoded through precise and developmentally specified hardwiring; in (B), odor identity is

decoded using rare labeled lines that are embedded within a broader population code for odor identity.

(C) Left: a thirdmodel, in which the behavioral consequence of plCoA activation depends upon the balance between neuronsmediating attraction and avoidance.

After odor learning (right), however, the relative strength of the PCx to pCoA afferents is altered, causing changes in the tuning properties of the plCoA neurons. In

this example, after learning has occurred odor B elicits activity inmore approach neurons than avoidance neurons, thereby changing the effective valence of odor

B. Thismodel provides an explanation for both how hardwiring from the bulb can elicit an innate behavior fromwhat appears to be a population code, and how the

plCoA could take advantage of its access to the PCx and downstream decoders to act as a switchboard, re-routing information about odors to appropriate

behavioral centers in an adaptive fashion.
with any given odor object to be adaptively reassigned. Indeed,

learning-based reassignment of valence has been observed for

multiple innately relevant odors including TMT (Sarrafchi et al.,
1194 Neuron 93, 1180–1197, March 8, 2017
2013). In this manner, the plCoA could act as a kind of neural

switchboard that routes information from PCx to striatal or

amygdalar behavioral centers; under baseline conditions, this



routing occurs based upon biases built into the system by hard-

wired afferents from the bulb (which represent a given odor

object), but these biases can be overridden by learning-driven

plasticity in PCx afferents representing that same odor object.

Population codes may therefore be present and function within

the plCoA to facilitate odor discrimination, allowing the plCoA

to adaptively reassign specific odors new behavioral meanings

as a consequence of experience. Because PCx axons also

innervate plCoA targets (like the medial amygdala and olfactory

tubercle), in an alternative formulation of this model the relevant

site of learning-based modulation may reside downstream of

the plCoA.

It is important to note that the models articulated above pre-

sume that plCoA and PCx neurons respond similarly to odors.

Although our analysis supports this viewpoint, there are observ-

able (albeit subtle) differences between the plCoA and PCx—

particularly in termsof the relative amountsof observedexcitation

and inhibition—thatmayplay an important role in odor perception

under circumstances not explored herein. For example, the rela-

tively low levels of odor-driven activation observed in the plCoA

could inprinciple lead to sparser representations for certain odors

(perhaps apparent under conditions in which many more odors

are tested; note the trend in Figure 3F); this could in turn generate

a relative excess of odor-selective neurons, a feature thatmay be

useful for generating odor-specific behaviors.

Our conclusions regarding the structure and nature of odor

representations in plCoA are also tempered by several caveats

that reflect technical limitations to our experiments. Although

our mice were freely behaving on a circular treadmill during the

neural recordings and behaviorally responded to the presenta-

tion of odors, they were still subject to conditions of restraint

during the recordings themselves. To our knowledge, meaning-

ful innate behavioral responses to odors in head-fixed mice on a

treadmill have not been previously observed, perhaps because

such responses require closed-loop modulation of odor dy-

namics during approach and avoidance-type behaviors. It is

therefore possible that behavioral restraint—or other state-

dependent differences that might impinge upon the olfactory

mantle—rewrites primary odor representations within the plCoA

so as to obscure the tuning properties of plCoA neurons

apparent during behavioral engagement. Even if this is the

case, however, collectively our observations argue against the

possibility that labeled lines represent the default organizational

mode of the plCoA.

A second caveat pertains to the geometry and placement of

our probes: it is possible that our probes did not sample suffi-

cient anatomical space to capture subregions in which olfactory

information was categorically organized within the plCoA. The

anterior region of the plCoA has been proposed to be enriched

for neurons that respond to aversive odors (Root et al., 2014);

although in many experiments our targeting coordinates ap-

peared to partially cover this area (Figure S1), it is possible the

subregion containing ‘‘aversive’’ neuronswasmissed, or that un-

avoidable variability in shank placement prevented us from iden-

tifying enriched populations of neurons due to spatial averaging

across experiments.

Finally, our experiments were performed under conditions that

did not allow us to definitively assign cellular identities to the re-
corded neurons. This limitation leaves open the possibility that

different cell types in both the plCoA and PCxmay non-uniformly

represent sensory features relevant to innate behaviors. This lim-

itation is potentially relevant given the hints we observe that at

least some information regarding the chemical or ethological

class of specific odors is present within populations of neurons

in both plCoA and PCx.

Our findings that odor identity is represented as a population

code in plCoA is reminiscent of findings by Ben-Shaul and col-

leagues, who recently characterized neural responses to natural

odormixtureswithin the accessoryOB (AOB), a peripheral neural

center that regulates a variety of odor-driven innate behaviors

(Kahan and Ben-Shaul, 2016). In those experiments, reliable de-

coding of chemosensory information about the strain or repro-

ductive state of a conspecific required pooling of information

from populations of AOB neurons. Thus, the use of population

codes may be a general strategy for encoding information rele-

vant to both innate and learned odor-driven behaviors at multiple

levels of the mammalian olfactory system.
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Guaiacol Sigma-Aldrich G5502

m-cresol Sigma-Aldrich W353000
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Trimethylamine Sigma-Aldrich 243205

Isopentylamine (Isoamylamine) Sigma-Aldrich W321907

2-Phenetylamine Sigma-Aldrich 41346

(±)-2-Methylbutyric acid Sigma-Aldrich W269514

3-mercapto-3-methylbutan-1-ol Sigma-Aldrich W385409

2,3-Butanedione Sigma-Aldrich 11038

Geraniol Sigma-Aldrich W250708

2-Phenylethanol Sigma-Aldrich 77861

Isoamyl acetate Sigma-Aldrich W205532

Wolf Urine PredatorPee 91512

Bobcat Urine PredatorPee 91412

2,3,5-trimethyl-3-thiazoline (TMT) SRQ Bio 5G-TMT-90

Experimental Models: Organisms/Strains

Mouse; strain: C57BL/6J; sex: male; age: 5-7 weeks old Jackson Laboratory Cat# 000664

Software and Algorithms

RHD2000 interface software Intan Technologies http://intantech.com/downloads.html

Klusta Rossant et al., 2016 https://github.com/kwikteam/klusta/-

quick-install-guide

MATLAB scripts for exploring the dataset and wrapper code

for classification analysis and concentration series analysis

This paper https://dattalab.github.io/Population-coding-

in-an-Innately-Relevant-Olfactory-Area/

Arduino code for olfactometer control This paper https://dattalab.github.io/Population-coding-

in-an-Innately-Relevant-Olfactory-Area/

MATLAB toolbox for Support Vector Machine classification http://www.csie.ntu.edu.tw/�cjlin/libsvm/
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
Adult male C57BL/6 mice were used for experiments (age: 5-7 weeks). Mice were co-housed with their littermates (2-5/cage) and

maintained on a 12 hr/12 hr light/dark cycle (dark hours: 10:00 – 22:00). Electrophysiological and behavioral experiments were per-

formed during the dark cycle. Prior to experiments, food and water were available ad libitum. For the natural mixture experiments,

mice were food deprived for 24 hr before the recording session to normalize their hunger state.

All experimental manipulations were performed in accordance with protocols approved by the Harvard Standing Committee on

Animal Care following guidelines described in the NIH Guide for the Care and Use of Laboratory Animals.

METHOD DETAILS

Surgical Procedures
Five to six days before recording, mice were fitted with custom-made aluminum head plates. Mice were first anesthetized using

0.1mg/kg / 2% isoflurane. The skin was then infiltrated with bupivacaine and the head-plate was fixed in place with acrylic cement

(Lang). Awell was created over the head-plate with acrylic cement, and a craniotomywas performed over the plCoA (a.p.:�1.65 from

bregma, m.l.: 2.8 frommedial suture) or the anterior PCx (a.p.: 0.8 from bregma, m.l: 3.10 frommedial suture) leaving the dura mater

intact. Kwik-Cast (WPI) was then used to cover the skull. Animals were injected with 0.1 mg/kg buprenorphine to ensure pain man-

agement post-surgically for three consecutive days.

Set-up Familiarization
Two days before the recording, mice were familiarized to head-fixation over a spherical treadmill and to the mask used for odor de-

livery and respiration monitoring for two 30-60 min sessions per day. Purified and humidified air was delivered during the familiariza-

tion procedure to habituate the mouse to airflow during the experiment. Before and after each familiarization session, each mouse

was gently handled for 2 3 10 min.

In Vivo Awake Extracellular Recordings
Mice were injected with dexamethasone (0.2 mg/kg IP) and the head-plate was clamped to a metal post over the treadmill.

NeuroNexus 32-channel silicon probes (either A4x2-tet-7mm-150-200-121 or A32-BuzsakiL) were then implanted. Both electrode

arrays have a four-shank configuration (distance between adjacent shanks: 200 mm; max vertical distance spanned by the

8 electrodes in each shank: 150 mm; see Figure S1A). The array was lowered at a speed of 2 mm/sec until a slight bending was

observed via stereoscope, due to contact with the inner surface of the skull. The array was then slowly retracted by 50-250 mm. Re-

cordings started after 45-60 min to ensure stabilization of the probe. A drop of Kwik-Cast (WPI) was then applied to minimize brain

movement. The well over the skull was filled with Ringer’s solution and a ground wire was immersed in the solution. A recording

session typically lasted 80 min. Acquisition was done at 20 KHz with an RHD2000 Series Intan Amplifier. In a subset of experiments

(24 out of 70) an additional recording session was performed to minimize the number of mice used. To this end, the array was either

retracted or lowered by 200 mm depending on the depth of the prior experiment. This travel distance guaranteed that the electrodes

remained within the ventral and dorsal boundaries of the plCoA and PCx (�500 mm) while ensuring that a new set of neurons was

sampled. The new recording session was started after an interval of 45-60 min to allow the array to stabilize.

Post-mortem Verification of Recording Sites
Recording sites in plCoA and PCx were verified by post-mortem inspection of the recording probe track (Figures S1B and S1C).

Recording sites were chosen within the anterior PCx, as this area is thought to contain neural populations that represent odor identity

(as opposed to the posterior PCx which may contain stronger representations of task-related features). After recordings were

concluded, the probe was slowly retracted, painted with DiI dissolved in ethanol and then reinserted to the last recording site.

The probe remained in the brain for at least 20 min before being retracted. The mouse was then sacrificed and the brain incubated

in 4% PFA for 24 hr. 100 mm sections were cut with a vibratome, counter-stained with DAPI to reveal cortical layering and inspected

under a fluorescence microscope at 10x magnification.

Odor Presentation
A custom Arduino-controlled 16-valve olfactometer that can separately deliver up to 15 odorants was used to present odors. The

16th valve was used to deliver a blank stimulus (no odor) between odor presentations. Custom Arduino software controlled valve

opening and closing, thereby enabling switching between odor vials and the blank vial. This software also controlled the output of

two mass flow controllers (MFC). The first MFC delivered a constant carrier flow at 1.8 L/min of purified and humidified air into a final

common channel; the second MFC supplied a constant flow at 0.2 L/min of clean air that was injected into an odor vial (see below)

and thenmerged with the carrier flow in a plastic mask placed in front of the mouse’s nose. A vacuum line continuously drew air/odor

out of themask’s airspace. A larger exhaust fan drew air from the Faraday cage that enclosed the rig to further prevent cross-contam-

ination. Monomolecular odors were diluted in di-propylene glycol (DPG) according to individual vapor pressures to give a nominal
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concentration of 100 ppm. This vapor-phase concentration was further diluted 1:10 by the carrier airflow inside the nose mask.

For the concentration series experiments, odorants were initially diluted to a nominal concentration of 85 mM and then serially

diluted 1:10, 1:100, 1:1000 and 1:10000. Natural mixtures, whose relative concentrations were indeterminate, were not diluted in

the vial. For all odors, a common, final 1:10 dilution in air (due to carrier flow) occurred in the nose mask. The blank vial contained

only DPG.

Odor Panels
Four different panels of odorants were used in independent experiments. One panel included 15 monomolecular compounds: pen-

tanal, hexanal, heptanal, heptanol, octanol, nonanol, phenetol, guaiacol, m-cresol, 2,4,5-trimethylthiazole, 4,5-dimethylthiazole,

4-methylthiazole, trimethylamine, isoamilamine and 2-phenyl-ethylamine. The second panel consisted of 8monomolecular odorants:

2,3,5-trimethyl-3-thiazoline (TMT), 2-methylbutyric acid (2-MB), 2-propyltiethane (2-PT), 3-mercapto-3-methylbutan-1-ol (MMB), iso-

pentylamine (IPA), 2,3-butanedione, geraniol and2-phenylethanol; and twonatural odors: peanut oil andestrus femaleurine (collected

1-3 days before an experiment and stored at 4�C in the dark). The third panel included 2-phenylethanol (2-PE), isoamylacetate (IAA)

and TMT at five different dilutions (described above). The fourth panel included 13 natural odors (referred to herein as natural odor

mixtures): non-homogenized sunflower seed butter, non-homogenized peanut butter, urine from a male mouse (who was a resident

in a different cage from themouse being recorded), urine from estrus female mice, wolf urine, bobcat urine, lavender flowers, rose oil,

coffee beans, fresh mint leaves, hickory chips, clove buds and eucalyptus oil.

Odorants were defined as ‘‘appetitive,’’ ‘‘aversive’’ or ‘‘neutral’’ based upon innate place preference assays previously published in

the literature; all of the odors defined as appetitive or aversive used herein drive both changes in the position of mice with respect

to the odor source and egocentric changes in behavior (like freezing) in our laboratory as well (data not shown; Wiltschko et al.,

2015). Of the odorants used in these experiments, TMT, 2-MB, 2-PT, MMB, and IPA have been shown to drive innate aversive or

avoidance responses (Kobayakawa et al., 2007; Root et al., 2014). 2,3-butanedione, geraniol, 2-PE, peanut oil and estrus female

urine have been previously shown to elicit approach and appetitive behaviors (Mandairon et al., 2009; Root et al., 2014). For the nat-

ural odor panel, two distinct odor classifications were adopted. One classification was based on the presumptive valence of the in-

dividual odors, whereas the other classification was based on a natural, albeit arbitrary, grouping of odors based on their possible

ethological meaning. Within the valence categorization, sunflower butter, peanut butter, female urine and rose oil were assigned

to the appetitive class; wolf urine, bobcat urine and mint leaves were assigned to the avoidance class as peppermint oil has been

shown to elicit avoidance (Saraiva et al., 2016); the remaining odors were grouped in ‘‘neutral’’ class because their valence is un-

known. Within the natural ethological categorization, sunflower and peanut butters were categorized as food odors, male and female

mouse urines were classified as conspecific odors, wolf and predator urines were classified as predator odors and the remaining

odors were classified as ‘‘neutral’’ odors.

Odor Delivery
Odors presentations lasted for two seconds and were interleaved by 28 s of blank (DPG) delivery. The order of presentation of odors

was pseudo-randomized for each experiment, and thus odors were not presented in a predictable order or twice in a row. Each odor

was presented 10 times in each experiment. Respiration wasmonitored using a flow sensor AWM3100VHoneywell) connected to the

nose mask used to deliver odors.

In a subset of experiments (n = 18), we measured the locomotion speed of the mouse through a 1024 P/R Quadrature rotary

encoder attached to the treadmill shaft.

Open Field Behavioral Characterization
Innate olfactory avoidance of a predator odor (wolf urine), innate attraction to estrus female urine and the relative preference between

these two odors were measured in 20 male mice after the electrophysiological recordings were completed; during these specific ex-

periments mice had been exposed to natural odors including wolf urine and estrus urine, thereby allowing this experiment to test

whether odor exposures during recording caused behavioral habituation.

After the electrophysiological experiment, mice were moved to a recovery cage where they could rest for 20 min before being

placed in a white acrylic box (20 cm wide x 35 cm long x 35 cm high) for the behavioral test. Each wall on the short sides of the

box contained a port (diameter: 2 cm) with a U-shaped IR break beamopto-sensor that was connected to an Arduinomicrocontroller.

A small tube for odor delivery was placed behind each opto-sensor, with a valve connected to an Arduino microcontroller controlling

airflow. Beam interruption by nose pokes triggered the opening of the valve and the delivery of an odor, which was contained in a

small vial. The duration of each beam interruption was recorded through a MATLAB custom script. Mice were allowed to familiarize

with the box for 10min, during which both ports delivered only DPG during each nose poke. All but twomice showed an idiosyncratic

preference for one port as assessed by the total amount of time spent exploring the port. After 10min of familiarization, the behavioral

test was automatically started. For avoidance testing, wolf urine was delivered during the exploration of the port that was preferred

during the familiarization phase. DPG was delivered during exploration of the other port. For approach testing, female estrus urine

was delivered during exploration of the port that was less preferred and DPG was presented upon investigation of the other port.

This approach was taken to maximally challenge the mouse to generate a given appetitive or aversive behavior. The test was auto-

matically terminated after 10 min. A preference index for the familiarization phase and one for the test phase were calculated as
e3 Neuron 93, 1180–1197.e1–e7, March 8, 2017



P1� P2

P1+P2
;

where P1 = investigation time of port 1 and P2 = investigation time of port 2 (note that ports 1 and 2 are the same for both phases). For

5 mice we adopted a variation of this assay to test the preference between wolf urine and estrus female mouse urine odors that were

delivered during the same experiment. Wolf urine was delivered during investigation of the port that was more explored during the

familiarization phase whereas female urine was delivered during investigation of the less explored port. A preference index was

calculated as

Pwolf � Pfemale

Pwolf +Purine

:

Data Analysis
LFP signals

LFP signals were extracted by band-pass filtering the raw traces of one channel of the most anterior shank in each experiment

(0.1-300 Hz). LFP power in the beta band was estimated by taking the average power in the 10-30 Hz frequency range in 3 s window

in absence of odors and in a 3 swindow starting at the onset of the first inhalation after the onset of the odor delivery. The odor evoked

fractional change of beta power was computed as

Beta PowerResponse � Beta PowerBaseline
Beta PowerBaseline

:

Spike Sorting and Criteria for Single Unit Inclusion

Spikes were sorted using a semi-supervised method. The open-source software Klusta was used to detect and cluster spikes into

putative single units (Rossant et al., 2016). Only spikes with amplitude larger than 4 times the standard deviation of the background

noise were detected and sorted. Clusters were manually curated to correct for any errors made by the automated algorithms. The

quality of clusters was evaluated post hoc by visual inspection of waveform shape, temporal stability, violations of the refractory

period (2 ms), cross-correlation among units. Only units with a L-ratio > 0.5 (isolation distance > 30, average S.N.R.: 5.2) were

included in the analyses. Furthermore, units that fired less than one action potential in more than five trials for all odors in the

1000 ms baseline window or response window were excluded. Repeating the same analyses performed after including units with

L-ratio < 1 gave similar results.

Criteria for Olfactory Response Identification

For each odor presentation (trial), spike times were aligned to the onset of the first inhalation (t0) after the opening of the odor valve.

The number of spikes in 1000 ms windows before and after t0 was counted for each trial. These spike counts were used to compute

the area-under-the-receiver-operating-curve (auROC) of the responses. Spike counts during a 1 s baseline window (from �2 s

to �1 s before the onset of the response window) and a 1 s response window in each trial were permuted 1000 times to generate

a null distribution of auROC values. The actual auROC value was considered significant if it was either below the 2.5th percentile

or above the 97.5th percentile of the null distribution (p < 0.05). An excitatory olfactory response in each trial was considered signif-

icant if the maximum spike count in a 50 ms bin (bin counts were smoothed through a 5 ms sliding window) exceeded 5 standard

deviations of the baseline firing rate in the same trial.

A Gaussian Mixture Model (GMM, gmfit in MATLAB) was used to cluster response types. This procedure was only used for sum-

marizing the data and was not intended to rigorously define response or cell types.

PSTH and Assessment of Phase Locking of Single Unit Activity to the Respiration Cycle

Smoothed peri-stimulus time histograms (PSTH) were obtained by convolving spike rasters with a Gaussian kernel with 50 ms stan-

dard deviation. Onset latencies of olfactory responses were determined as the first time point after the spike density exceeded the

mean of the baseline spike density calculated over a 1000ms window. To analyze whether neural activity was respiration modulated,

single trial rasters were partitioned into bins delimited by the onset and offset of each consecutive inhalation and exhalation. The

spike count in each bin was normalized by the inhalation (or exhalation) duration to obtain a firing rate. Cycle-matching bins were

averaged across trials to obtain an inhalation-exhalation based PSTH for each olfactory response. To examine the distribution of

the phases of the maximum firing rates during baseline and during the first second of odor presentation, the phase of each spike

relative to the current respiratory cycle was determined. The lengths of each inhalation and exhalation cycle were linearly mapped

on an 180� window and spike times were then transformed into the respective angle.

Fano Factor

The Fano Factor of olfactory responses is computed as the variance of the spike count change (relative to baseline) normalized by the

mean spike count change over all trials.

Lifetime Sparseness

Lifetime sparseness (Willmore and Tolhurst, 2001) was computed as

�
1�

nh
SN
j rj

.
N
i2.n

SN
j

h
r2j

.
N
io�.

ð1� 1=NÞ;
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where rj was the spike count change of a neuron in response to odorant j and N was the total number of odorants. Only for this anal-

ysis, negative spike count changes were zeroed.

Information about Odor/Class Identity for Single Units

Mutual information (MI) about odor/class identity for single units and pseudo-population of neurons was obtained from the respective

confusion matrix previously obtained through linear SVM decoding as follows:

MIðx; yÞ=
X
x

X
y

pðx; yÞ$ log2

pðx; yÞ
pðxÞ$pðyÞ;

where x is the actual class of the observation presented to the classifier, y is the predicted class for that observation, p(x) and p(y) are

marginal probability and p(x,y) is the joint probability obtained from the confusion matrix. Details about the linear SVM decoding pro-

cedure are provided in the paragraph ‘‘Classifier Analysis.’’

Odor Valence Discriminability for Single Units

The discriminability of the valence of an odor from the spike count responses of a neuron was calculated using auROC analysis. The

auROC was obtained from two spike count vectors x and y. x and y are 50-dimensional vectors of spike counts in a one second

response window (5 odors/valence class, 10 trials). To assess the significance of each index, the elements of x and y were recipro-

cally shuffled 200 times, and a distribution of index values was generated to assign a percentile to the actual vector value. Indexes

below the 2.5th or above the 97.5th percentiles of the null distribution were considered significant.

Signal and Noise Correlation

The signal correlation between two neurons indicates the similarity of their tuning profiles. The pairwise signal correlation was

computed as the Pearson’s correlation coefficient between the two vectors of mean spike count responses (change from baseline)

to odors. The noise correlation is defined as the correlation of the trial-to-trial variability around the mean response to an odor. To

compute the pairwise noise correlation between two neurons, the mean spike count response (change from baseline) to a given

odor was subtracted from the spike count response (change from baseline) to the same odor on each trial. The vectors of these re-

siduals for each odor were concatenated to obtain a single vector for each neuron. This vector was Z scored. The pairwise noise

correlation was computed as the Pearson’s correlation coefficient of the two vectors of residuals of two neurons.

Neurons were grouped by agglomerative hierarchical clustering (method: single, metric: correlation) to generate a dendrogram of

tuning profiles (see Figure 3J). For each neuron, the spike count responses to each odor (relative to baseline) were aligned in an odor-

tuning vector. The distance between the tuning profiles of pairs of odors was computed as 1 – Pearson’s correlation coefficient of the

two odor tuning vectors. Pairs of neurons were hierarchically linked together based on the shortest correlation distance.

Analysis of Concentration Series Experiment

For the concentration series experiment, a cell-odor pair with at least one excitatory response was deemed as invariant if the neuron

exhibited significant excitatory responses to a given odor at all concentrations and these responses were not significantly different

among them as assessed by an ANOVA test (p > 0.05). To assess themonotonicity of the responses of a cell-odor pair, a linewas fit to

the average responses of the responsive neuron to all concentrations of a given odor sorted by the concentration magnitude. Note

that this specific method was used to assess both concentration invariance and response monotonicity in work exploring odor

responses in PCx axons in the olfactory bulb (Otazu et al., 2015). To test whether the slope of the fit line was significantly different

from 0, the order of the average responses to distinct concentrations of given odor was permuted 500 times to obtain a control dis-

tribution of 500 slopes. If the actual slope was within the 2.5th and 97.5th percentiles of the control distribution, the neuron-odor pair

responses were deemed as non-monotonic.

For each concentration, a unit that responded to at least one odor was defined as odor discriminant if the responses to different

odors were different as assessed by an ANOVA test (p < 0.05).

Classifier Analysis

To estimate the information carried by plCoA and PCx ensembles we took a decoding-based approach. Either a support vector ma-

chine or a least-square multiple regression model was used to identify a hyperplane that segregated neural activity data based upon

odor identity, chemical class or odor valence, and we asked how well this hyperplane segregated these categories given increasing

number of neurons as data points. Specifically, all units (L-ratio < 1) that responded to at least one odor in each odor panel were

pooled in plCoA and PCx to build two pseudo-populations of neurons. Then responses (Z scored spike counts) of a population of

up to N randomly selected neurons (the maximum common number of neurons recorded across the four different odor panel exper-

iments performed) were considered, given t presentations of j odors as a matrix X with N rows (neurons/features) and t x j columns

(trials/observations x odors/classes). Each column of this matrix is thus a vector of N spike counts, one for each cell in response to a

given odor in each trial.

Each decoding session started with a split of the matrix in two sets of vectors: the training set included 0.9 x t randomly chosen

trials for each class and the test set comprised the 0.1 x t held out trials for each class (i.e., a standard 9:1 training:testing split). Note

that here, ‘‘class’’ depends upon the specific experiment being analyzed, and can refer to odor identity, chemical class, ethological

class or odor valence. In case of unequal number of trials for different classes, the number of trials across all classeswas equalized by

randomly selecting a number of trials equal to that available for the least represented class. Regardless of the number of different

classes in an experiment (e.g., 15 monomolecular odors), all classifications were performed using binary classifiers in which the abil-
e5 Neuron 93, 1180–1197.e1–e7, March 8, 2017



ity of the classifier to distinguish two specific classes was assessed. Distinct classifiers were generated for all possible binary com-

binations of classes within a given experiment. The models obtained from each trained binary classifier were then probed using the

test dataset. All classifiers classified each trial, and the class label assigned to a given trial was that which the individual binary clas-

sifiers choose most often. In the case of ties, the trial was randomly assigned to a class.

This procedure, which is instantiated as part of the standard SVM library (http://www.csie.ntu.edu.tw/�cjlin/libsvm/), allows us to

use a binary classification algorithm (such as an SVM) to comparemultiple classes. To show that thismethod is robust to the details of

the binary comparison, we also implemented an alternative classification strategy previously used for neural classification, in which

the binary classification is not performed between two odors but rather between one odor and all other odors considered as a sepa-

rate class (Rust and Dicarlo, 2010). This alternative procedure yielded nearly identical results to the one-versus-one binary classifier

(data not shown), which we therefore chose to use because of its simplicity of implementation.

In any given experiment, the train-test procedure was iterated 500 times (with training and test data randomly chosen on each iter-

ation) to cross-validate classifier performance, and at the end of this procedure the outcomes of each individual iteration (of the 500)

were averaged to generate a measure of classification accuracy across all restarts; this is the overall measure that is reported in the

main text.

If the decoding procedure was performed on a subpopulation of neurons, a randomly selected subset of neurons was used for

each cross-validation cycle. The hyperplanes for each classifier were determined using the LIBSVM library (http://www.csie.ntu.

edu.tw/�cjlin/libsvm/) with a linear kernel, the C-SVC algorithm, and cost c. Cost c is the only free parameter for a linear kernel,

and it was found by a grid search on an initial dataset including 50 randomly chosen neurons from plCoA and 50 randomly chosen

neurons from PCx in order to maximize the accuracy of the decoder’s classification. Alternatively, a least square multiple regression

model (Shen et al., 2013) or a non-linear, Gaussian Radial Basis Support Vector Machine was used.

To assess the influence of correlated activity, which has been shown to affect linear readout population performance, in some an-

alyses noise correlations and signal correlations were removed by shuffling trial order for each neuron in a pseudo-population and the

odor label for each neuron; note that most of these pairwise correlations are naturally absent because the data are pooled frommul-

tiple animals, but since each animal contributes multiple neurons to the dataset, removing noise correlations from the dataset elim-

inates any residual correlation structure caused by including neurons recorded from the same mouse.

To test the hypothesis that the chemical class of an odor (15 odors, 3 odors/class) can be decoded from the responses of a pop-

ulation of neurons, a null distribution was built by pooling the decoding accuracy of decoders trained to classify 5 random combina-

tions of 3 odors. To this end, the actual sequence of 15 odors sorted by chemical class was permuted 150 times and consecutive

triplets of odors in the new sequence were assigned to a specific class. A new decoder was trained for each permutation of the

odor labels.

Similarly, the hypothesis that valence (appetitive/aversive) of an odor (10 odors, 5 odors/class) can be decoded from the responses

of a population of neurons was tested by generating a null distribution including the decoding accuracy for all possible bi-partitions of

the 10 odor labels.

To test the statistical significance of the decoding accuracies of the valence and the ethological class of natural mixtures of odor-

ants, null distributions were generated by adopting the same method used for the chemical class experiment.

Partitioning the 13 natural mixtures of odorants in 3 valence classes (neutral, aversive and appetitive) or 4 ethological classes (nut

butters, conspecific urines, predator urines and other) results in an unbalanced number of observations per class. To correct for such

unbalance, the number of trials in each class was forced to equal the number of trials in the smallest class for each training and testing

iteration.

Correlation Analysis

Pairwise similarity between the population representations of two odors was assessed as the Pearson’s correlation coefficient of two

population vectors of Z scored mean spike count responses (change from the baseline) to the two odors. For each unit that re-

sponded to at least one odor, the mean spike count responses to each odor were Z scored across odors. For correlation matrices

shown in Figures 5F, S5E, and S5F, pairs of single trial population vectors were averaged.

PCA analysis

PCA analysis was used to visualize odor ensemble representations in the reduced coding space of plCoA and PCx in Figure 6K.

N-dimensional vector representation of each stimulus for each trial were built from the responses of all units that were activated

by at least one stimulus in each area. Pairs of these population vectors were then averaged to obtain pseudo-trial odor representa-

tions. The responses of each neuron were Z scored across all stimuli. Finally, MATLAB function pca was applied to the matrix

composed of all population vectors in each area to obtain a reduced representation of the odor representation (first 3 principal com-

ponents) in that area.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed with MATLAB. Sample sizes were not estimated in advance. Data groups were tested for

normality using the Kolmogorov-Smirnov test and then compared using the appropriate test (t test, N-ways ANOVA, Wilcoxon

rank-sum test, permutation test, c2 test). All tests were two sided. Bootstrap estimates of percentiles were calculated by re-sampling

with replacement from the original data. Statistical parameters including the measurements of arithmetic mean standard error of the
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mean (mean ± SEM), median, 2.5th-97.5th percentiles, statistical tests and significance are reported in the figures and figure legends.

In figures, asterisks denote statistical significance as calculated by the specified statistical tests (*p < 0.05; **p < 0.01; ***p < 0.001).

For statistical analysis on correlation coefficients a Fisher transformation of the coefficients was performed. Further details for quan-

tification and analysis of behavior and electrophysiology are provided in the corresponding sections.

DATA AND SOFTWARE AVAILABILITY

Data are available at https://dattalab.github.io/Population-coding-in-an-Innately-Relevant-Olfactory-Area/. Custom Arduino code

for olfactometer control, MATLAB scripts and functions for exploring the dataset and wrapper code for classification analysis and

concentration series analysis are available at https://dattalab.github.io/Population-coding-in-an-Innately-Relevant-Olfactory-Area/.
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Figure S1. Related to Figure 1. Extracellular Multi-Shank Recordings in 

plCoA and PCx. A. Schematic representation of 32-channel, four-shank silicon 

probes. Intershank distance is 200 µm. Each shank carries 8 electrodes arranged 
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in one of the two illustrated configurations. B. Coronal sections depicting the 

placement of the first and fourth shanks (left and right, respectively) of the silicon 

probe in plCoA and PCx (top and bottom row, respectively) in two experiments 

as assessed by post-hoc DiI staining. C. Schematics showing coronal sections 

through most of plCoA (left) and a portion of PCx (right). The estimated 

placement of the first shank of the silicon probe in each experiment is indicated 

by a green dot. plCoA and PCx are indicated by red and grey shading 

respectively. Coronal diagrams are adapted from (Paxinos and Franklin, 2004). 

D. Average running speed before, during and after odor presentation in the first 

(green) and last (purple) 5 trials. Black, all trials. E. Average changes in speed to 

each indicated odor; distributions are significantly non-uniform, suggesting that 

odors can elicit specific levels of locomotion (p<0.05, Wilcoxon Rank sum test). 

F, left. Behavioral response of mice after neural recordings in an open field 

assay to either an appetitive (female mouse urine, blue) or aversive (wolf urine, 

yellow) odor mixture. F, right. Relative preference of mice for an appetitive 

odorant in an open field odor choice assay. A distinct cohort of mice is reported 

in each plot. These behavioral experiments demonstrate that mice are capable of 

generating a behavior in response to odors across trials during the neural 

recordings, that the amount of locomotion elicited by each odor differs, 

(suggesting that animals can behaviorally distinguish odors and are not in a 

behavioral state in which odor discrimination is not possible, i.e., they are not 

frozen in fear), and that the mice can express appropriate innate behavioral 

responses after being freed of restraint, revealing that they have not behaviorally 
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habituated to the odors as a consequence of repeated presentation during the 

recordings.  
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Figure S2. Related to Figure 1. Odor-Evoked Changes in the Local Field 

Potential in plCoA. A. Examples of odor-evoked local field potential (LFP) 

responses to odors in four distinct experiments in plCoA and PCx (0.1-300 Hz 

bandpass filtered). In most trials odors elicit large and prolonged oscillations (left) 

of the LFP. These oscillations typically are in the beta-frequency range (10-30 

Hz) as illustrated in the wavelet spectrograms on the right. The period of odor 

exposure is indicated by the green shaded patch in the left column and the 

window within the dashed lines in the spectrograms. B. Quantification of the 

average change in the beta power across all odors in the plCoA (red) and PCx 
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(blue) (p>0.05, t-test). C. Quantification of the average change in the beta power 

across five concentrations of three odors in the plCoA (red) and PCx (blue) 

(p<0.05 for TMT and isoamylacetate in PCx and TMT in plCoA, ANOVA). Note 

that the volatility of TMT and isoamylacetate are significantly higher than for 2-

phenylethanol, which likely explains the differences in evoked beta power 

between these odorants.  
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Figure S3. Related to Figure 2. Odor Response Densities Across 

Experiments in both plCoA and PCx. Proportion of neurons that are activated 

(A) or inhibited (B) by each odor (of three odor sets) over all trials (error bar = 

SEM) in plCoA (red) or PCx (blue). Each bar corresponds to a distinct odor 
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whose identity is reported below panel. No statistical differences were observed 

in the across-experiment average response fraction amongst odors within a 

given brain area (p>0.05, ANOVA). 
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Figure S4. Related to Figure 2. Reliability of Odor-Evoked Responses in 

plCoA and PCx. A. Distributions of the Fano Factor of 8025 excitatory 

responses in plCoA (red) and 5085 excitatory responses in PCx (blue). The Fano 

Factor was computed as the trial-to-trial variance of the spike counts during the 

first second after the odor onset normalized by the mean spike count. B. Grand-

averages of the odor-evoked change of the Fano Factor in plCoA and PCx. For 

each neuron, the Fano Factor in 50 ms bins was computed by measuring the 

slope of the regression line that fits the relationship between the means and the 

variances of the spike counts in each bin before or after odor onset for all odors. 

The Fano Factor time course of each neuron was then smoothed with a 100 ms 

sliding window. The means (dark lines) and standard deviations (shaded) across 
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all neurons are indicated. C. Odor-evoked spike count changes for individual 

neurons between the first and last five trials within an experiment. Mean odor-

evoked spike rates fell from 4.8 to 2.8 in plCoA, and from 6.4 to 5.2 in PCx. D. 

Fraction of cell-odor pairs with an overall significant excitatory response that 

responded during each indicated trial (as defined by a peak amplitude 4 standard 

deviations above the baseline mean). 
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Figure S5. Related to Figure 4. Classification Accuracy and Odor 

Correlations in plCoA and PCx. A. and B. Accuracy of classifiers constructed 

as in Figure 4A using alternative classification methods, including least squares 

C
orrelation

C
or

rle
at

io
n 

be
tw

ee
n

od
or

 re
pr

es
en

ta
tio

ns
C

or
rle

at
io

n 
be

tw
ee

n
od

or
 re

pr
es

en
ta

tio
ns

Valence Classes

plCoA PCx

plCoA PCx

Chemical Classes

0

0.8

0.2

0.4

1

0.6

C
orrelation

0

0.8

0.2

0.4

1

0.6

0
10
20
30
40
50
60
70
80
90

100
Ac

cu
ra

cy
 %

actual data
- signal correlation
- noise correlation

PCx

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 %

13 natural odors
 Gaussian Radial Basis SVM

100500 150
0

10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 %

13 natural odors
 Least Square Multiple Regression

100500 150
0

10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 %

15 monomolecular odors
 Gaussian Radial Basis SVM

40300 5010 20 60 70 80 90
0

10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 %
15 monomolecular odors

 Least Square Multiple Regression

40300 5010 20 60 70 80 90

0
10
20
30
40
50
60
70

Ac
cu

ra
cy

 %

80
90

100

actual data
- signal correlation
- noise correlation

plCoA

40300 5010 20 60 70 80 90 40300 5010 20 60 70 80 90

Population Size Population Size Population Size Population Size

Population Size Population Size

C
.

E.

F.

A. B.

D
.

Iurilli and Datta, Figure S5

PCx
plCoA

1: pentanal
2: hexanal

3: heptanal
4: heptanol

5: octanol
6: nonanol

7: phenetol
8: guaiacol
9: m-cresol

10: 2,4,5-trimethylthiazole
11: 4,5-dimethylthiazol

12: 4-methylthiazole
13: trimethylamine
14: isoamylamine

15: 2-phenyl-ethylamine

1 2 3 4 5 6 7 8 9 10 11 12 13 41 51 1 2 3 4 5 6 7 8 9 10 11 12 13 41 51

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9

1: 2,3,5 trimethyl-3-thiazoline
2: 2-methylbutiric acid

3: 2-propytiethan
4: 3-mercapto-3-methylbutan-1-ol 

6: butanedione
7: geraniol

8: 2-phenylethanol
9: peanut oil

10: estrus female urine

5: isoamylamine

10

0
10
20
30
40
50
60
70
80
90

100

10 20 30 40 500

Population Size

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 %

10 20 30 40 500

Population Size

only neurons with excitatory responses, PCx

only neurons with excitatory responses, plCoA
simulated labeled lines, plCoA

simulated labeled lines, PCx

100 % reliability observed reliability



	
   12 

multiple regression and a radial basis (non-linear) SVM, using the 

monomolecular (A) and natural mixtures (B) datasets. C. Accuracy of linear 

classifiers constructed as in Figure 4A before and after removal of signal and 

noise correlations using the monomolecular odor dataset D. Accuracy of linear 

classifiers constructed as in Figure 4A comparing performance from populations 

composed of labeled lines with those using broadly tuned neurons. In (left), 

classifiers were built using recorded neurons that exhibit only excitatory 

responses to one or more odors. These neurons were rendered “100% reliable” 

by assigning the mean of the response to a given odor of a given neuron to all 

trial responses (filled lines). Labeled line neurons were obtained from the same 

neurons by zeroing their responses out to all, but their preferred odor (dotted 

lines). Note that there were no neurons that preferentially responded to 5 out of 

15 odors in PCx in this dataset, hence the worse performance of the decoder in 

PCx as compared to plCoA (dotted lines). As shown in (left), a small number of 

broadly tuned neurons significantly outperform labeled lines under conditions 

where responses are perfectly reliable. Under more physiological conditions — 

as when non-preferred responses are not zeroed out but rather are assigned 

baseline firing rates, broadly tuned neurons still outperform synthetic labeled 

lines (right). E. Correlation matrices of ensemble odor representations for the 15 

monomolecular odor experiment (grouped by chemical class) in plCoA and PCx; 

five pseudo-trials (average of two trials) of each odor (whose identity is indicated) 

are independently depicted here to illustrate cross-trial variability as well as 
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across-odor correlations. F. Correlation matrices as in E but using data from the 

10 odor valence dataset, with the odors grouped by imputed valence.  
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