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Abstract
We develop a new framework for unsupervised
learning that composes probabilistic graphical
models with deep learning methods and com-
bines their respective strengths. Our method
uses graphical models to express structured prob-
ability distributions and recent advances from
deep learning to learn flexible feature models
and bottom-up recognition networks. All compo-
nents of these models are learned simultaneously
using a single objective, and we develop scal-
able fitting algorithms that can leverage natural
gradient stochastic variational inference, graph-
ical model message passing, and backpropaga-
tion with the reparameterization trick. We illus-
trate this framework with a new structured time
series model and an application to mouse behav-
ioral phenotyping.

1. Introduction
Unsupervised probabilistic modeling often has two goals:
first, to learn a model that is flexible enough to represent
complex high-dimensional data, such as images or speech
recordings, and second, to learn model structure that is in-
terpretable, admits meaningful priors, and generalizes to
new tasks. That is, it is often not enough just to learn the
probability density of the data: we also want to learn a
meaningful representation. Probabilistic graphical models
(Koller & Friedman, 2009; Murphy, 2012) provide many

tools to build such structured representations, but can be
limited in their capacity and may require significant feature
engineering before being applied to data. Alternatively,
advances in deep learning have yielded not only flexible,
scalable generative models for complex data like images
but also new techniques for automatic feature learning and
bottom-up inference (Kingma & Welling, 2014; Rezende
et al., 2014).

Consider the problem of learning an unsupervised genera-
tive model for a depth video of a tracked freely-behaving
mouse, illustrated in Figure 1. Learning interpretable rep-
resentations for such data, and studying how those rep-
resentations change as the animal’s genetics are edited
or its brain chemistry altered, can create powerful be-
havioral phenotyping tools for neuroscience and for high-
throughput drug discovery (Wiltschko et al., 2015). Each
frame of the video is a depth image of a mouse in a par-
ticular pose, and so even though each image is encoded as
30 × 30 = 900 pixels, the data lie near a low-dimensional
nonlinear manifold. A good generative model must not
only learn this manifold but also represent many other
salient aspects of the data. For example, from one frame to
the next the corresponding manifold points should be close
to one another, and in fact the trajectory along the mani-
fold may follow very structured dynamics. To inform the
structure of these dynamics, a natural class of hypotheses
used in ethology and neurobiology (Wiltschko et al., 2015)
is that the mouse’s behavior is composed of brief, reused
actions, such as darts, rears, and grooming bouts. There-
fore a natural representation would include discrete states
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Figure 1. Illustration of unsupervised generative modeling ap-
plied to depth video of a mouse. Each video frame lies near a
low-dimensional image manifold, and we wish to learn a param-
eterization of this manifold in which trajectories can be modeled
with switching linear dynamics.

with each state representing the simple dynamics of a par-
ticular primitive action, a representation that would be diffi-
cult to encode in an unsupervised recurrent neural network
model. These two tasks, of learning the image manifold
and learning a structured dynamics model, are complemen-
tary: we want to learn the image manifold not just as a set
but in terms of manifold coordinates in which the struc-
tured dynamics model fits the data well. A similar model-
ing challenge arises in speech (Hinton et al., 2012), where
high-dimensional data lie near a low-dimensional manifold
because they are generated by a physical system with rel-
atively few degrees of freedom (Deng, 1999) but also in-
clude the discrete latent dynamical structure of phonemes,
words, and grammar (Deng, 2004).

To address these challenges, we propose a new method to
design and learn such models. Our approach uses graph-
ical models for representing structured probability dis-
tributions, and uses ideas from variational autoencoders
(Kingma & Welling, 2014) for learning not only the non-
linear feature manifold but also bottom-up recognition net-
works to improve inference. Thus our method enables the
combination of flexible deep learning feature models with
structured Bayesian and even Bayesian nonparametric pri-
ors. Our approach yields a single variational inference ob-
jective in which all components of the model are learned
simultaneously. Furthermore, we develop a scalable fitting
algorithm that combines several advances in efficient infer-
ence, including stochastic variational inference (Hoffman
et al., 2013), graphical model message passing (Koller &
Friedman, 2009), and backpropagation with the reparam-
eterization trick (Kingma & Welling, 2014). Thus our al-
gorithm can leverage conjugate exponential family struc-
ture where it exists to efficiently compute natural gradients

with respect to some variational parameters, enabling ef-
fective second-order optimization (Martens, 2015), while
using backpropagation to compute gradients with respect
to all other parameters. We refer to our general approach
as the structured variational autoencoder (SVAE). In this
paper we illustrate the SVAE using graphical models based
on switching linear dynamical systems (SLDS) (Murphy,
2012; Fox et al., 2011).

Code is available at github.com/mattjj/svae.

2. Background
Here we briefly review some of the ideas on which this
paper builds. This section also fixes notation that is reused
throughout the paper.

2.1. Natural gradient stochastic variational inference

Stochastic variational inference (SVI) (Hoffman et al.,
2013) applies stochastic gradient ascent to a mean field
variational inference objective in a way that exploits ex-
ponential family conjugacy to efficiently compute natural
gradients (Amari, 1998; Martens, 2015). Consider a model
composed of global latent variables θ, local latent variables
x = {xn}Nn=1, and data y = {yn}Nn=1,

p(θ, x, y) = p(θ)

N∏
n=1

p(xn|θ)p(yn|xn, θ), (1)

where p(θ) is the natural exponential family conjugate prior
to the exponential family p(xn, yn|θ),

ln p(θ) = 〈ηθ, tθ(θ)〉 − lnZθ(ηθ) (2)
ln p(xn, yn|θ) = 〈ηxy(θ), txy(xn, yn)〉 − lnZxy(ηxy(θ))

= 〈tθ(θ), (txy(xn, yn), 1)〉. (3)

Figure 2 shows the graphical model. The mean field
variational inference problem is to approximate the pos-
terior p(θ, x | y) with a tractable distribution q(θ, x)
by finding a local minimum of the KL divergence
KL(q(θ, x)‖p(θ, x | y)) or, equivalently, using the identity

ln p(y) = KL(q(θ, x)‖p(θ, x | y))+Eq(θ,x)
[
ln
p(θ, x, y)

q(θ, x)

]
,

to choose q(θ, x) to maximize the objective

L[q(θ, x)] , Eq(θ,x)
[
ln
p(θ, x, y)

q(θ, x)

]
≤ ln p(y). (4)

Consider the mean field family q(θ)q(x) = q(θ)
∏
n q(xn).

Because of the conjugate exponential family structure, the
optimal global mean field factor q(θ) is in the same family
as the prior p(θ),

ln q(θ) = 〈η̃θ, tθ(θ)〉 − lnZθ(η̃θ). (5)

https://github.com/mattjj/svae
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Figure 2. Prototypical graphical model for SVI.

The mean field objective on the global variational param-
eters η̃θ, optimizing out the local variational factors q(x),
can then be written

L(η̃θ) , max
q(x)

Eq(θ)q(x)
[
ln
p(θ, x, y)

q(θ)q(x)

]
≤ ln p(y) (6)

and the natural gradient of the objective (6) decomposes
into a sum of local expected sufficient statistics (Hoffman
et al., 2013):

∇̃η̃θL(η̃θ) = ηθ +

N∑
n=1

Eq∗(xn)(txy(xn, yn), 1)− η̃θ, (7)

where q∗(xn) is a locally optimal local mean field factor
given η̃θ. Thus we can compute a stochastic natural gradi-
ent update for our global mean field objective by sampling
a data minibatch yn, optimizing the local mean field factor
q(xn), and computing scaled expected sufficient statistics.

2.2. Variational autoencoders

The variational autoencoder (VAE) (Kingma & Welling,
2014; Rezende et al., 2014) is a recent model and varia-
tional inference method that links neural network autoen-
coders (Vincent et al., 2008) with mean field variational
Bayes. Given a high-dimensional dataset y = {yn}Nn=1

such as a collection of images, the VAE models each ob-
servation yn in terms of a low-dimensional latent variable
xn and a nonlinear observation model with parameters ϑ,

xn
iid∼ N (0, I), n = 1, 2, . . . , N (8)

yn |xn, ϑ ∼ N (µ(xn;ϑ),Σ(xn;ϑ)) (9)

where µ(xn;ϑ) and Σ(xn;ϑ) might depend on xn through
a multilayer perceptron (MLP) with L layers,

h`(xn) = f(W`h`−1(xn) + b`), ` = 1, 2, . . . , L, (10)
µ(xn;ϑ) = WµhL(xn) + bµ, (11)
Σ(xn;ϑ) = diag(exp(Wσ2hL(xn) + bσ2)), (12)

ϑ = ({(W`, b`)}L`=1, (Wµ, bµ), (Wσ2 , bσ2)), (13)

with h0(xn) = xn and f(x) = tanh(x) elementwise. Be-
cause we will reuse this particular MLP construction, we
introduce the notation

(µ(xn;ϑ),Σ(xn;ϑ)) = MLP(xn;ϑ). (14)

yn

xn

N

#

(a) VAE generative model.

yn

xn

N

#

(b) VAE variational family.

Figure 3. Graphical models for the variational autoencoder.

To approximate the posterior p(ϑ, x | y), the variational au-
toencoder uses the mean field family

q(ϑ)q(x | y) = q(ϑ)

N∏
n=1

q(xn | yn). (15)

A key insight of the variational autoencoder is to use a con-
ditional variational density q(xn | yn), where the param-
eters of the variational distribution on xn depend on the
corresponding data point yn. In particular, we can take
the mean and covariance parameters of q(xn | yn) to be
µ(yn;φ) and Σ(yn;φ), respectively, where

(µ(yn;φ),Σ(yn;φ)) = MLP(yn;φ) (16)

and φ denotes a set of MLP parameters. Thus the varia-
tional distribution q(xn | yn) acts like a stochastic encoder
from an observation to a distribution over latent variables,
while the forward model p(yn |xn) acts as a stochastic de-
coder from a latent variable value to a distribution over
observations. Furthermore, the functions µ(yn;φ) and
Σ(yn;φ) act as a recognition or inference network for ob-
servation yn, outputting a distribution over the latent vari-
able xn using a feed-forward neural network applied to yn.
See Figure 3 for graphical models of the VAE.

The resulting mean field objective expresses a variational
Bayesian version of an autoencoder. Using η̃ϑ to denote
the variational parameters for the factor q(ϑ), the varia-
tional parameters are then the encoder parameters φ and
the decoder parameters η̃ϑ, and the objective is

L(η̃ϑ, φ) , Eq(ϑ)q(x | y)

[
ln
p(ϑ)

q(ϑ)
+

N∑
n=1

ln
p(xn, yn |ϑ)

q(xn | yn)

]
.

To optimize this objective efficiently, Kingma & Welling
(2014) applies a reparameterization trick. To simplify no-
tation and computation, we take q(ϑ) to be a singular factor
q(ϑ) = δϑ∗(ϑ) so that the corresponding variational param-
eters η̃ϑ can be denoted ϑ∗ and some terms can be dropped.
First, we rewrite the objective as

L(ϑ∗, φ) = Eq(x | y) ln p(y |x, ϑ∗)−KL(q(x | y) ‖ p(x)).

The term KL(q(x | y) ‖ p(x)) is the KL divergence be-
tween two Gaussians and its gradient with respect to φ
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can be computed in closed form. To compute stochastic
gradients of the expectation term, since a random variable
xn ∼ q(xn | yn) can be parameterized as

xn = g(φ, ε) , µq(yn;φ) + Σq(yn;φ)
1
2 ε, ε ∼ N (0, I),

the expectation term can be rewritten in terms of g(φ, ε)
and its gradient approximated via Monte Carlo over ε,

∇ϑ∗,φEq ln p(y |x, ϑ∗) ≈
N∑
n=1

∇ϑ∗,φ ln p(yn | g(φ, ε̂n), ϑ∗)

where ε̂n
iid∼ N (0, I). Because g(φ, ε) is a differentiable

function of φ, these gradients can be computed using stan-
dard backpropagation. For scalability, the sum over data
points is also approximated via Monte Carlo. General non-
singular factors q(ϑ) can also be handled by the reparame-
terization trick (Kingma & Welling, 2014, Appendix F).

3. Generative model and variational family
In this section we develop an SVAE generative model and
corresponding variational family. To be concrete we fo-
cus on a particular generative model for time series based
on a switching linear dynamical system (SLDS) (Murphy,
2012; Fox et al., 2011), which illustrates how the SVAE can
incorporate both discrete and continuous latent variables
with rich probabilistic dependence. To simplify notation
we consider modeling only one data sequence of length T ,
denoted y = y1:T .

First, Section 3.1 describes the generative model, which
illustrates the combination of a graphical model express-
ing latent structure with a flexible neural net to generate
observations. Next, Section 3.2 describes the structured
variational family, which leverages both graph-structured
mean field approximations and flexible recognition net-
works. Section 3.3 discusses variations and extensions.

3.1. A switching linear dynamical system with
nonlinear observations

A switching linear dynamical system (SLDS) represents
data in terms of continuous latent states that evolve ac-
cording to a discrete set of linear dynamics. At each time
t ∈ {1, 2, . . . , T} there is a discrete-valued latent state
zt ∈ {1, 2, . . . ,K}, which indexes the dynamical mode,
and a continuous-valued latent state xt ∈ RM that evolves
according to that mode’s linear Gaussian dynamics:

xt+1 = A(zt)xt +B(zt)ut, ut
iid∼ N (0, I), (17)

where A(k), B(k) ∈ RM×M for k = 1, 2, . . . ,K. The dis-
crete latent state zt evolves according to Markov dynamics,

zt+1 | zt, π ∼ π(zt) (18)

where π = {π(k)}Kk=1 denotes the Markov transition ma-
trix and π(k) ∈ Rn+ is its kth row. The initial states are
generated separately:

z1 |πinit ∼ πinit, (19)

x1 | z1, µinit,Σinit ∼ N (µ
(z1)
init ,Σ

(z1)
init ). (20)

Thus inferring the latent variables and parameters of an
SLDS identifies a set of reused dynamical modes, each de-
scribed as a linear dynamical system on latent states, in
addition to Markov switching between different linear dy-
namics. We use θ to denote all the dynamical parameters,
θ = (π, πinit, {(A(k), B(k), µ

(k)
init ,Σ

(k)
init )}Kk=1).

At each time t, the continuous latent state xt gives rise to
an observation yt that is conditionally Gaussian with mean
µ(xt;ϑ) and covariance Σ(xt;ϑ),

yt |xt, ϑ ∼ N (µ(xt;ϑ),Σ(xt;ϑ)). (21)

In a typical SLDS (Fox et al., 2011), µ(xt;ϑ) is linear in
xt and Σ(xt;ϑ) is a constant function, so that we can take
ϑ = (C,D) for some matrices C and D and write

yt = Cxt +Dvt, vt
iid∼ N (0, I). (22)

However, to enable flexible modeling of images and other
complex features, we allow the dependence to be a more
general nonlinear model. In particular, we consider
µ(xt;ϑ) and Σ(xt;ϑ) to be MLPs with parameters ϑ as
in Eqs. (10)-(13) of Section 2.2,

(µ(xt;ϑ),Σ(xt;ϑ)) = MLP(xt;ϑ). (23)

By allowing a nonlinear emission model, each low-
dimensional state xt can be mapped into a high-
dimensional observation yt, and hence the model can rep-
resent high-dimensional data in terms of structured dynam-
ics on a low-dimensional manifold. The overall generative
model is summarized in Figure 4a.

Note that by construction the density p(z, x | θ) is an expo-
nential family. We can choose the prior p(θ) to be a natural
exponential family conjugate prior, writing

ln p(θ) = 〈ηθ, tθ(θ)〉 − lnZθ(ηθ) (24)
ln p(z, x|θ) = 〈ηzx(θ), tzx(z, x)〉 − lnZzx(ηzx(θ))

= 〈tθ(θ), (tzx(z, x), 1)〉. (25)

We can also use a Bayesian nonparametric prior, choosing
K =∞ and generating the discrete state sequence z1:T ac-
cording to an HDP-HMM (Fox et al., 2011). Though we do
not discuss the Bayesian nonparametric case further, the al-
gorithms we develop here immediately extend to the HDP-
HMM using the methods in Johnson & Willsky (2014).
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(a) SLDS generative model with nonlinear observation
model parameterized by ϑ.
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(b) Structured CRF variational family with node po-
tentials {ψ(x(n)
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t , φ)}Tt=1 parameterized by φ.

Figure 4. Graphical models for the SLDS generative model and corresponding structured CRF variational family.

(a) LDS
(b) GMM (c) G-HMM

Figure 5. Special cases of the SLDS generative model.

This construction contains the generative model of the
VAE, described in Section 2.2, as a special case. Specif-
ically, the VAE uses the same class of MLP observation
models, but each latent value xt is modeled as an indepen-
dent and identically distributed Gaussian, xt

iid∼ N (0, I),
while the SVAE model proposed here allows the xt to
have a rich joint probabilistic structure. The SLDS gen-
erative model also includes as special cases the Gaussian
mixture model (GMM), Gaussian-emission discrete-state
HMM (G-HMM), and Gaussian linear dynamical system
(LDS), and thus the algorithms we develop here for the
SLDS directly specialize to these models. See Figure 5 for
graphical models of these special case models.

While using conditionally linear dynamics within each
state may seem limited, the flexible nonlinear observation
distribution greatly extends the capacity of such models.
Indeed, recent work on neural word embeddings (Mikolov
et al., 2013) as well as neural image models (Radford et al.,
2015) has demonstrated learned latent spaces in which lin-
ear structure corresponds to meaningful semantics. For ex-
ample, addition and subtraction of word vectors can corre-
spond to semantic relationships between words and trans-
lation in an image model’s latent space can correspond to
an object’s rotation. Therefore linear models in a learned
latent space can yield significant expressiveness while en-
abling fast probabilistic inference, interpretable priors and
parameters, and a host of other tools. In particular, linear
dynamics allow us to learn or encode information about
timescales and frequencies: the eigenvalue spectrum of
each transition matrix A(k) directly represents its charac-

teristic timescales, and so we can control and interpret the
structure of linear dynamics in ways that nonlinear dynam-
ics models do not allow.

3.2. Variational family and CRF recognition networks

Here we describe a structured mean field family with which
we can perform variational inference in the posterior distri-
bution of the generative model from Section 3.1. This mean
field family illustrates how an SVAE can leverage not only
graphical model and exponential family structure but also
learn bottom-up inference networks. As we show in Sec-
tion 4, these structures allow us to compose several effi-
cient inference algorithms including SVI, message passing,
backpropagation, and the reparameterization trick.

In mean field variational inference, one constructs a
tractable variational family by breaking dependencies in
the posterior (Wainwright & Jordan, 2008). To construct
a structured mean field family for the generative model de-
veloped in Section 3.1, we break the posterior dependen-
cies between the dynamics parameters θ, the observation
parameters ϑ, the discrete state sequence z = z1:T and
the continuous state sequence x = x1:T , writing the cor-
responding a factorized density as

q(θ, ϑ, z1:T , x1:T ) = q(θ)q(ϑ)q(z1:T )q(x1:T ). (26)

Note that this structured mean field family does not break
the dependencies among the discrete states z1:T or among
the continuous states x1:T as in a naive mean field model
because these random variables are highly correlated in the
posterior. By preserving joint dependencies across time,
these structured factors provide a much more accurate rep-
resentation of the posterior while still allowing tractable in-
ference via graphical model message passing (Wainwright
& Jordan, 2008).

To leverage bottom-up inference networks, we parameter-
ize the factor q(x1:T ) as a conditional random field (CRF)
(Murphy, 2012). That is, using the fact that the optimal fac-
tor q(x1:T ) is Markov according to a chain graph, we write
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it terms of pairwise potentials and node potentials as

q(x1:T ) ∝
(
T−1∏
t=1

ψ(xt, xt+1)

)(
T∏
t=1

ψ(xt; yt, φ)

)
(27)

where the node potential ψ(xt; yt, φ) is a function of the
observation yt. Specifically, we choose each node poten-
tial to be a Gaussian factor in which the precision matrix
J(yt;φ) and potential vector h(yt;φ) depend on the corre-
sponding observation yt through an MLP,

ψ(xt; yt, φ) ∝ exp

{
−1

2
xTt J(yt;φ)xt + h(yt;φ)Txt

}
,

(h(yt;φ), J(yt;φ)) = MLP(yt;φ), (28)

using the notation from Section 2.2. These local recogni-
tion networks allow us to fit a regression from each obser-
vation yt to a probabilistic guess at the corresponding la-
tent state xt. Using graphical model inference, these local
guesses can be synthesized with the dynamics model into a
coherent joint factor q(x1:T ) over the entire state sequence.
While we could write q(x1:T | y1:T ) to emphasize this de-
pendence and match the notation in Section 2.2, we only
write q(x1:T ) to simplify notation. The overall variational
family is summarized in Figure 4b.

There are many alternative designs for such recognition
networks; for example, the node potential on xt need not
depend only on the observation yt. See Section 3.3.

This structured mean field family can be directly compared
to the fully factorized family used in the variational autoen-
coder described in Section 2.2. That is, there is no graph
structure among the latent variables of the VAE. The SVAE
generalizes the VAE by allowing the output of the recogni-
tion network to be arbitrary potentials in a graphical model,
such as the node potentials considered here. Furthermore,
in the SVAE some of the graphical model potentials are
induced by the probabilistic model rather than being the
output of a recognition network; for example, the optimal
pairwise potentials ψ(xt, xt+1) are induced by the varia-
tional factors on the dynamical parameters and latent dis-
crete states, q(θ) and q(z1:T ), and the forward generative
model p(z, x | θ) (see Section 4.2.1). Thus the SVAE pro-
vides a way to combine bottom-up information from flex-
ible inference networks with top-down information from
other latent variables in a structured probabilistic model.

When p(θ) is chosen to be a conjugate prior, as in Eq. (24),
the optimal factor q(θ) is in the same exponential family:

q(θ) = exp {〈η̃θ, tθ(θ)〉 − logZθ(η̃θ)} , (29)

where η̃θ denotes the variational natural parameters. To
simplify notation, as in Section 2.2 we take the variational
factor on the observation parameters to be a singular distri-
bution, q(ϑ) = δϑ∗(ϑ). The mean field objective in terms

(a) (b)

Figure 6. Alternative SLDS recognition models.

(a)
(b)

Figure 7. Variations on the SLDS generative model.

of the global variational parameters η̃θ, ϑ∗, and φ is then

L(η̃θ, ϑ
∗, φ), max

q(z)q(x)
Eq(θ)q(z)q(x)

[
ln
p(θ, z, x)p(y |x, ϑ∗)

q(θ)q(z)q(x)

]
(30)

where, as in Eq. (6), the maximization is over the free pa-
rameters of the local variational factors q(z) and q(x) given
fixed values of η̃θ, ϑ∗, and φ. In Section 4 we show how to
optimize this variational objective.

3.3. Variations and extensions

The SVAE construction is general: it can admit many latent
probabilistic models as well as many flexible observation
models and recognition network designs. In this section
we outline some of these possibilities.

While the SVAE recognition network described in Sec-
tion 3.2 only produces node potentials depending on single
data points, in general SVAE recognition networks can out-
put potentials on more than one node or take as input more
than one data point. For example, a recognition network
could output node potentials of the form φ(xt; yt, yt−1)
that depend also on the previous data point, as sketched in
Figure 6a, or even depend on many data points through a re-
current neural network (RNN). Recognition networks may
also output factors on discrete latent variables, as sketched
in Figure 6b.

The observation model may also be extended, for example
to allow data to be generated according to a nonlinear au-
toregression, as sketched in Figure 7a. This extension may
be useful when modeling video so that a frame can be gen-
erated in part by reference to the preceding frame.

Finally, the SVAE also admits many generative models,
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both structured probabilistic graphical models and more
flexible alternatives. As mentioned in Section 3.2, the
SLDS described here includes many common structured
graphical models as special cases, shown in Figure 5.
For example, by using a GMM inside an SVAE, one
can express a warped mixture model (Iwata et al., 2013).
The SLDS also lends itself to many extensions, including
explicit-duration semi-Markov modeling of discrete states
(Johnson & Willsky, 2013) or IO-HMMs (Bengio & Fras-
coni, 1995), sketched in Figure 7b. More generally, SVAEs
provide a direct way to incorporate hierarchical Bayesian
modeling, which enables many ways to share latent ran-
dom variables and generalize across datasets. Because
the SVAE can draw on the vast literature on probabilistic
graphical models, there is a rich library of potential SVAEs.
Finally, though we focus on traditional probabilistic graph-
ical models here, the SVAE generative model can also be
an RNN expressing flexible nonlinear dynamics (Archer
et al., 2015), though such models would not in general ad-
mit the efficient inference algorithms and natural gradients
provided by exponential families.

4. Learning and inference
In this section we give an efficient algorithm for comput-
ing stochastic gradients of the SVAE objective in Eq. (30).
These stochastic gradients can be used in a generic op-
timization routine such as stochastic gradient ascent or
Adam (Kingma & Ba, 2015).

As we show, the SVAE algorithm is essentially a combi-
nation of SVI (Hoffman et al., 2013) and AEVB (Kingma
& Welling, 2014), described in Sections 2.1 and 2.2, re-
spectively. By drawing on SVI, our algorithm is able to
exploit exponential family conjugacy structure, when it is
available, to efficiently compute natural gradients with re-
spect to some variational parameters. Because natural gra-
dients are adapted to the geometry of the variational family
and are invariant to model reparameterizations (Amari &
Nagaoka, 2007) natural gradient ascent provides an effec-
tive second-order optimization method (Martens & Grosse,
2015; Martens, 2015). By drawing on AEVB, our algo-
rithm can fit both general nonlinear observation models and
flexible bottom-up recognition networks.

The algorithm is split into two parts. First, in Section 4.1
we describe the general algorithm for computing gradi-
ents of the objective in terms of the results from a model-
specific inference subroutine. Next, in Section 4.2 we detail
this model inference subroutine for the SLDS.

4.1. SVAE algorithm

Here we show how to compute stochastic gradients of the
SVAE mean field objective (30) using the results of a model

inference subroutine. The algorithm is summarized in Al-
gorithm 1 and implemented in svae.py.

For scalability, the stochastic gradients used here are com-
puted on minibatches of data. To simplify notation, we as-
sume the dataset is a collection ofN sequences, {y(n)}Nn=1,
each of length T . We sample one sequence y(n) uni-
formly at random and compute a stochastic gradient with
it. It is also possible to sample subsequences and compute
controllably-biased stochastic gradients (Foti et al., 2014).

The SVAE algorithm computes a natural gradient with re-
spect to η̃θ and standard gradients with respect to ϑ∗ and φ.
To compute these gradients, as in Section 2.2 we split the
objective L(η̃θ, ϑ

∗, φ) as

Eq(x) ln p(y |x, ϑ∗)−KL(q(θ, z, x) ‖ p(θ, z, x)). (31)

Note that only the second term depends on the variational
dynamics parameter η̃θ. Furthermore, it is a KL diver-
gence between two members of the same exponential fam-
ily (Eqs. (24) and (29)), and so as in Hoffman et al. (2013)
and Section 2.1 we can write the natural gradient of (31)
with respect to η̃θ as

∇̃η̃θL = ηθ +

N∑
n=1

Eq(z)q(x)(tzx(z(n), x(n)), 1)− η̃θ (32)

where q(z) and q(x) are taken to be locally optimal local
mean field factors as in Eq. (7). Therefore by sampling the
sequence index n uniformly at random, an unbiased esti-
mate of the natural gradient is given by

∇̃η̃θL ≈ ηθ +NEq(z)q(x)(tzx(z(n), x(n)), 1)− η̃θ. (33)

We abbreviate t̄(n)zx , Eq(z)q(x)tzx(z(n), x(n)). These ex-
pected sufficient statistics are computed efficiently using
the model inference subroutine described in Section 4.2.

To compute the gradient of the SVAE objective with re-
spect to the observation parameters ϑ∗, note that only the
first term in (31) depends on ϑ∗. As in Section 2.2, we can
compute a Monte Carlo approximation to this gradient us-
ing samples {x̂(n)s (φ)}Ss=1 where x̂(n)s (φ)

iid∼ q(x(n)) and
we write x̂(n)s (φ) to note the dependence on φ. These sam-
ples are generated efficiently (and as differentiable func-
tions of φ) by the model inference subroutine described in
Section 4.2. To simplify notation we take S = 1.

Finally, we compute gradients with respect to the recog-
nition network parameters φ. Both the first and second
terms of (31) depend on φ, the first term through the sam-
ple x̂(n)(φ) and the second term through the KL divergence
KL(φ) , KL(q(θ, z(n), x(n)) ‖ p(θ, z(n), x(n))). Thus we
must differentiate through the procedures that the model
inference subroutine uses to compute these quantities. As

https://github.com/mattjj/svae/blob/master/svae/svae.py
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Algorithm 1 Computing gradients of the SVAE objective

Input: Variational dynamics parameter η̃θ of q(θ), obser-
vation model parameter ϑ∗, recognition network param-
eters φ, sampled sequence y(n)

function SVAEGRADIENTS(η̃θ, ϑ∗, φ, y(n))
ψ ← RECOGNIZE(y(n), φ)

(x̂(n)(φ), t̄
(n)
zx , KL(φ))← INFERENCE(η̃θ, ψ)

∇̃η̃θL ← ηθ +N(t̄
(n)
zx , 1)− η̃θ

∇ϑ∗,φL ←∇ϑ∗,φ

[
N ln p(y(n)| x̂(n)(φ), ϑ∗)−KL(φ)

]
returnnatural gradient ∇̃η̃θL, gradient∇ϑ∗,φL

end function

described in Section 4.2, performing this differentiation
efficiently for the SLDS corresponds to backpropagation
through message passing.

To observe that both x̂(n)(φ) and KL(φ) can be computed
differentiably by the model inference subroutine of the
SLDS, and to relate this process to the reparameterization
trick of Section 2.2, note that the objective only depends
on φ through the optimal factor q(x(n)1:T ), which is a joint
Gaussian factor over the latent continuous states. That is,
we can write the sample x̂(n)(φ) ∼ q(x(n)1:T ) as

x̂(n)(φ) = g(φ, ε) , J−1(φ)h(φ) + J(φ)−
1
2 ε (34)

where ε ∼ N (0, I), h(φ) ∈ RTM , and J(φ) ∈ RTM×TM .
The matrix J(φ) is a block tridiagonal matrix correspond-
ing to the Gaussian LDS of (27), the block diagonal of
which depends on φ. Since g(φ, ε) is differentiable with
respect to φ, this representation shows that x̂(n)(φ) is dif-
ferentiable with respect to φ. Given a sample ε̂, to evalu-
ate∇φg(φ, ε̂) efficiently we can exploit the block tridiago-
nal structure of J(φ), which corresponds exactly to back-
propagating through the message passing procedure used to
sample q(x(n)1:T ). Similarly, to evaluate the gradient of the
second term of (31), which is computed analytically, we
simply backpropagate through the message passing routine
used to compute it. Both message passing computations are
part of the model inference subroutine described in Sec-
tion 4.2. Computing each of these gradients using stan-
dard backpropagation tools requires twice the time of the
message passing algorithms used to compute them. When
the reparameterization trick is not available, the score func-
tion estimator can be used instead (Kleijnen & Rubinstein,
1996; Gelman & Meng, 1998; Ranganath et al., 2014)

4.2. Model inference subroutine

Here we describe the model inference subroutine used by
the SVAE algorithm.

Because the VAE corresponds to a particular SVAE with
limited latent probabilistic structure, this inference sub-

Algorithm 2 Model inference subroutine for the SLDS

Input: Variational dynamics parameter η̃θ of q(θ), node
potentials {ψ(xt; yt)}Tt=1 from recognition network
function INFERENCE(η̃θ, {ψ(xt; yt)}Tt=1)

Initialize factor q(x)
repeat
q(z) ∝ exp{Eq(θ)q(x)ln p(z, x | θ)}
q(x) ∝ exp{Eq(θ)q(z)ln p(x | z, θ)}

∏
t ψ(xt; yt)

until q(z) and q(x) converge
x̂← sample q(x)
t̄zx ← Eq(z)q(x)tzx(z, x)
KL← KL(q(θ) ‖ p(θ))

+NEq(θ) KL(q(z)q(x) ‖ p(z, x | θ))
returnsample x̂, expected stats t̄zx, divergence KL

end function

routine can be viewed as a generalization of two steps in
the AEVB algorithm (Kingma & Welling, 2014). Specif-
ically, using the notation of Section 2.2, in the spe-
cial case of the VAE the inference subroutine computes
KL(q(x | y) ‖ p(x)) in closed form and generates samples
x ∼ q(x | y) used to approximate Eq(x) ln p(y |x). How-
ever, the inference subroutine of an SVAE may in gen-
eral perform other computations: first, because the SVAE
can include other latent random variables and graph struc-
ture, the inference subroutine may optimize local mean
field factors or run message passing. Second, because the
SVAE can perform stochastic natural gradient updates on
the global factor q(θ), the inference subroutine may also
compute expected sufficient statistics.

In this subsection, we detail these computations for the
SLDS model. Specifically, the inference subroutine must
first optimize the local mean field factors q(z1:T ) and
q(x1:T ), then compute and return a sample x̂1:T ∼ q(x1:T ),
expected sufficient statistics Eq(z)q(x)tzx(z, x), and a KL
divergence KL(q(θ, z, x) ‖ p(θ, z, x)). To simplify nota-
tion, we drop the sequence index n, writing y in place of
y(n). The algorithm is summarized in Algorithm 2 and im-
plemented in slds svae.py.

4.2.1. OPTIMIZING LOCAL MEAN FIELD FACTORS

As in the SVI algorithm of Section 2.1, for a given data se-
quence y we need to optimize the local mean field factors
q(z) and q(x). That is, for a fixed global parameter factor
q(θ) with natural parameter η̃θ and fixed node potentials
ψ = {ψ(xt; yt)}Tt=1 output by the recognition network,
we optimize the variational objective with respect to both
the local variational factor on discrete latent states q(z1:T )
and the local variational factor on continuous latent states
q(x1:T ). This optimization can be performed efficiently by
exploiting the SLDS exponential family form and the struc-
tured variational family.

https://github.com/mattjj/svae/blob/master/svae/slds_svae.py
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The algorithm proceeds by alternating between optimizing
q(x1:T ) and optimizing q(z1:T ). Fixing the factor on the
discrete states q(z1:T ), the optimal variational factor on the
continuous states q(x1:T ) is proportional to

exp

{
lnψ(x1) +

T−1∑
t=1

lnψ(xt, xt+1) +

T∑
t=1

lnψ(xt; yt)

}
,

where

ψ(x1) = Eq(θ)q(z) ln p(x1 | z1, θ) (35)
ψ(xt, xt+1) = Eq(θ)q(z) ln p(xt+1 |xt, zt, θ), (36)

Because the densities p(x1 | z1, θ) and p(xt+1 |xt, zt, θ)
are Gaussian exponential families, the expectations in
Eqs. (35)-(36) can be computed efficiently, yielding Gaus-
sian potentials with natural parameters that depend on both
q(θ) and q(z1:T ). Furthermore, because each ψ(xt; yt) is
itself a Gaussian potential, the overall factor q(x1:T ) is
a Gaussian linear dynamical system with natural parame-
ters computed from the variational factor on the dynami-
cal parameters q(θ), the variational parameter on the dis-
crete states q(z1:T ) and the recognition model potentials
{ψ(xt; yt)}Tt=1.

Because the optimal factor q(x1:T ) is a Gaussian linear dy-
namical system, we can use message passing to perform
efficient inference. In particular, the expected sufficient
statistics of q(x1:T ) needed for updating q(z1:T ) can be
computed efficiently. Message passing can also be used
to draw samples or compute the log partition function effi-
ciently, as we describe in Section 4.2.2.

Similarly, fixing q(x1:T ) the optimal factor q(z1:T ) is pro-
portional to

exp

{
lnψ(z1) +

T−1∑
t=1

lnψ(zt, zt+1) +

T∑
t=1

lnψ(zt)

}
,

where

ψ(z1) = Eq(θ) ln p(z1 | θ) + Eq(θ)q(x) ln p(x1 | z1, θ)
ψ(zt, zt+1) = Eq(θ) ln p(zt+1 | zt) (37)

ψ(zt) = Eq(θ)q(x) ln p(xt+1 |xt, zt, θ)
Again, because the densities involved are exponential fam-
ilies, these expectations can be computed efficiently. The
resulting factor q(z1:T ) is an HMM with natural parameters
that are functions of q(θ) and q(x1:T ). Both the expected
sufficient statistics required for updating q(x1:T ) as well as
the log partition function required in Section 4.2.2 can be
computed efficiently by message passing.

4.2.2. SAMPLES, EXPECTED STATISTICS, AND KL

After optimizing the local variational factors, the model in-
ference subroutine uses the optimized factors to draw sam-
ples, compute expected sufficient statistics, and compute

a KL divergence. The results of these inference computa-
tions, which we detail here, are then used to compute gra-
dients of the SVAE objective as described in Section 4.1.

To draw S samples {x̂(s)}Ss=1 where x̂(s)1:T
iid∼ q(x1:T ), we

can perform message passing in q(x1:T ), which is a Gaus-
sian distribution that is Markov with respect to a chain
graph. Given two neighboring nodes i and j we define the
message from i to j as

mi→j(xj) ,
∫
ψ(xi; yi)ψ(xi, xj)mk→i(xi) dxi (38)

where k is the other neighbor of node i. We can pass mes-
sages backward once, running a Kalman filter, and then
sample forward S times. That is, after computing the mes-
sages mt+1→t(xt) for t = T − 1, . . . , 1, we compute the
marginal distribution on x1 as

q(x1) ∝ ψ(x1)ψ(x1; y1)m2→1(x1) (39)

and sample x̂1 ∼ q(x1). Iterating, given a sample of x̂t−1,
we sample x̂t from the conditional distributions

q(xt | x̂1:t−1) ∝ ψ(x̂t−1, xt)ψ(xt; yt)mt+1→t(xt),

q(xT | x̂1:T−1) ∝ ψ(x̂T−1, xT )ψ(xT ; yT ), (40)

thus constructing a joint sample x̂1:T ∼ q(x1:T ).

To compute the expected sufficient statistics for the natural
gradient step on η̃θ we can also use message passing, this
time in both factors q(x1:T ) and q(z1:T ) separately. Recall
the exponential family notation from Eqs. (24)-(25). The
required expected sufficient statistics, which we abbreviate
as t̄zx , Eq(x)q(z)tzx(z, x), are of the form

Eq(z)I[zt = i, zt+1 = j], Eq(z)I[zt = i],

Eq(z)I[zt = k]Eq(x)
[
xtx

T
t+1

]
, (41)

Eq(z)I[zt = k]Eq(x)
[
xtx

T
t

]
, Eq(z)I[z1 = k]Eq(x)[x1] ,

where I[ · ] denotes an indicator function. Each of these
can be computed easily from the marginals q(xt, xt+1) and
q(zt, zt+1) for t = 1, 2, . . . , T − 1, and these marginals
can be computed in terms of the respective graphical
model messages. For example, to compute the marginal
q(xt, xt+1), we write

q(xt, xt+1) ∝ ψ(xt; yt)ψ(xt, xt+1)ψ(xt+1; yt+1)

·mt−1→t(xt)mt+2→t+1(xt+1). (42)

Because each of the factors is a Gaussian potential, the
product yields a Gaussian marginal with natural parameters
computed from the sum of the factors’ natural parameters.
The corresponding expected sufficient statistics can then be
computed by converting from natural parameters to mean
parameters. The computations for q(zt, zt+1) are similar.
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Finally, to compute the required KL divergence efficiently,
we split KL(q(θ, z, x) ‖ p(θ, z, x)) into three terms:

KL(q(θ, z, x) ‖ p(θ, z, x)) = KL(q(θ) ‖ p(θ)) + (43)
Eq(θ) KL(q(z)‖p(z | θ)) + Eq(θ)q(z) KL(q(x)‖p(x | z, θ)).

Each term is a divergence between members of the same
exponential family and thus can be computed in terms of
natural parameters, expected sufficient statistics, and log
partition functions. In particular, the first term is

Eq(θ)
[
ln
q(θ)

p(θ)

]
= 〈η̃θ − ηθ, t̄θ〉−(lnZθ(η̃θ)− lnZθ(ηθ)),

t̄θ , Eq(θ)tθ(θ). (44)

Because the factors q(z) and q(x) are locally optimal for
q(θ) (Beal, 2003), the second and third terms are simply
the log partition functions of q(z) and q(x), respectively,
each of which can be computed efficiently from message
passing, along with some linear terms. Note that the third
term in the KL divergence (43) is a function of the recog-
nition network parameters φ through the conditional node
potentials {ψ(xt; yt, φ)}Tt=1 in q(x).

5. Related work
In addition to the papers already referenced, there are sev-
eral recent papers to which this work is related. The two
papers closest to this work are Krishnan et al. (2015) and
Archer et al. (2015).

In Krishnan et al. (2015) the authors consider combining
variational autoencoders with continuous state-space mod-
els, emphasizing the relationship to linear dynamical sys-
tems (also called Kalman filter models). They primarily fo-
cus on nonlinear dynamics and an RNN-based variational
family, as well as allowing control inputs (analogous to the
IO-HMM extension mentioned in Section 3.3 and in Fig-
ure 7b, though with no discrete states and with the covari-
ates influencing the continuous states). The approach in
Krishnan et al. (2015) covers many nonlinear probabilistic
state-space models but does not extend to general graphi-
cal models and in particular discrete latent variables. That
approach also does not leverage SVI, natural gradients, or
efficient message passing inference in the case of (switch-
ing) linear dynamics. However, their nonlinear dynamcis
model is more general than the conditionally linear dynam-
ics we explicitly consider here. The authors also emphasize
causal and counterfactual inference.

In Archer et al. (2015) the authors also consider the prob-
lem of variational inference in general continuous state
space models but focus on using a structured Gaussian vari-
ational family. They show how to extend the AEVB al-
gorithm of Kingma & Welling (2014) to leverage block

tridiagonal-structured precision (inverse covariance) matri-
ces, and hence develop a method more suitable for time
series and state space models. Leveraging this tridiago-
nal structure in the AEVB algorithm is the same as the
backpropagation through message passing in q(x1:T ) dis-
cussed in Section 4.2.2, though our algorithm also back-
propagates through message passing in the discrete state
factor q(z1:T ). The authors do not discuss learning dy-
namics models; instead, they focus on the case of infer-
ence with known nonlinear dynamics. As with Krishnan
et al. (2015), their model does not include discrete latent
variables (or any latent variables other than the continuous
states) and does not discuss SVI for learning. The over-
all algorithm of Archer et al. (2015) can be most directly
compared to part of the model inference subroutine we dis-
cuss in Section 4.2, namely to the steps of optimizing the
chain-structured factor q(x1:T ) and performing efficient in-
ference in it, with the key difference of emphasizing non-
linear dynamics. Indeed, the inference algorithm of Archer
et al. (2015) can be used in an SVAE to handle inference
with conditionally nonlinear dynamics, and so these works
are complementary. Notably, Section 4.1 and specifically
Eq. (16) of Krishnan et al. (2015) demonstrate a recogni-
tion network that outputs pairwise potentials (i.e. dynamics
potentials).

There are many other recent related works, especially lever-
aging new deep learning ideas. In particular, both Gregor
et al. (2015) and Chung et al. (2015) extend the variational
autoencoder framework to sequential models, though they
focus on models based on RNNs rather than probabilistic
graphical models. More classical approaches for nonlin-
ear filtering, smoothing, and model fitting are surveyed in
Krishnan et al. (2015).

6. Experiments
In this section we apply the SVAE to both synthetic and
real data and demonstrate its ability to learn both rich fea-
ture representations and simple latent dynamics. First, we
apply a linear dynamical system (LDS) SVAE to synthetic
data and illustrate some aspects of its training dynamics.
Second, we apply an LDS SVAE and switching linear dy-
namical system (SLDS) SVAE to modeling depth video
recordings of mouse behavior.

6.1. Image of a moving dot

As a synthetic data example, consider a sequence of 1D
images representing a dot bouncing from one side of the
image to the other, as shown in the top panel of Figure 8a.
While these images are simple, the task of modeling such
sequences captures many salient aspects of the SVAE: to
make predictions far into the future with coherent uncer-
tainty estimates, we can use an LDS SVAE to find a low-
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dimensional latent state space representation, along with a
nonlinear image model and a simple model of dynamics in
the latent state space.

We trained the LDS SVAE on 80 random image sequences
each of length 50, using one sequence per update, and show
the model’s future predictions given a prefix of a longer se-
quence. We used MLP image and recognition models each
with one hidden layer of 50 units. Figures 8a and 8b show
predictions from an LDS SVAE at two stages of training.
Taken from an early stage in training, Figure 8a shows that
the LDS SVAE first learns an autoencoder that can repre-
sent the image data accurately. However, while the latent
space allows the images to be encoded and decoded ac-
curately, the latent space trajectories are not well modeled
by a linear dynamical system and hence future predictions
are highly uncertain. As training proceeds, the SVAE ad-
justs the latent space representation so that the trajectories
can be accurately modeled and predicted using an LDS, as
shown in Figure 8b, and hence long-range predictions be-
come very accurate. Figure 9 shows the same experiment
repeated with a higher resolution image.

Figure 10 shows predictions from the fit LDS SVAE based
on revealing data prefixes of different lengths. Note that
when only a single frame is revealed, the model is uncertain
as to whether the dot is moving upwards or downwards in
the image. However, instead of showing a bifurcation in the
predictions corresponding to these two distinct hypotheses,
because the latent dynamics are linear the model’s predic-
tions encompass all possible trajectories between these two
hypotheses. With a nonlinear dynamics model, such as a
switching LDS (SLDS) or a more general recurrent neu-
ral network (RNN), a model that explicitly represents this
bimodal hypothesis could be learned, at least in principle.

Finally, we also use this synthetic data problem to illus-
trate the significant optimization advantages that can be
provided by the natural gradient updates with respect to the
variational dynamics parameters. In Figure 11 we compare
natural gradient updates with standard gradient updates at
three different learning rates. The natural gradient algo-
rithm not only learns much faster but also is less dependent
on parameterization details: while the natural gradient up-
date used an untuned stepsize of 0.1, the standard gradient
dynamics at step sizes of both 0.1 and 0.05 resulted in some
matrix parameters that are required to be positive definite
to be updated to indefinite values. This particular indef-
initeness error with standard gradients can be avoided by
working in a different parameterization of the positive def-
inite parameter matrices, but we used a direct parameter-
ization to make the learning rate comparison more direct.
While a step size of 0.01 yielded a stable standard gradient
update, training is significantly slower than with the natu-
ral gradient algorithm, and this speed advantage of natural

gradients is often greater in larger models and higher di-
mensions (Martens & Grosse, 2015).
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Figure 11. Comparison on the dot problem of natural gradient up-
dates (blue) and standard gradient updates (orange). The X’s indi-
cate that the algorithm was terminated early due to indefiniteness.

6.2. Application to mouse behavioral phenotyping

As a real data experiment, we apply the SVAE to modeling
depth video of freely-behaving mice. The goal of behav-
ioral phenotyping is to identify patterns of behavior and
study how those patterns change when the animal’s envi-
ronment, genetics, or brain function are altered. The SVAE
framework is well-suited to provide new modeling tools for
this task because it can learn rich nonlinear image features
while learning an interpretable representation of the latent
dynamics.

We use a version of the dataset from Wiltschko et al.
(2015), in which a mouse is recorded from above using a
depth camera, as shown in Figure 12. The mouse’s posi-
tion and orientation are tracked and the depth image of the
mouse’s body is extracted, as shown in the insets. We apply
the SVAE to the task of modeling these extracted videos.
We used a subset of the dataset consisting of 8 recordings,
each of a distinct mouse and each 20 minutes in length at
30 frames per second, for a total of 288000 video frames.

First, we show that the variational autoencoder (VAE) ar-
chitecture allows us to accurately represent the manifold of
depth images. We fit a standard VAE to the depth video
frames, using two hidden layers of size 200 for the en-
coder and decoder along with a 10D latent space; we reuse
this same architecture for the subsequent SVAE models.
Figure 13 shows both samples of the real video frames
(top panel) and images generated from the VAE by sam-
pling from a standard Gaussian in the latent space (bottom
panel), demonstrating that the VAE image model can gen-
erate very accurate synthetic mouse images. Furthermore,
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(a) Predictions after 200 training epochs. (b) Predictions after 1100 training epochs.

Figure 8. Predictions from an LDS SVAE fit to 1D dot image data at two different stages of training. In each subfigure, the top panel
shows an example data sequence with time on the horizontal axis. The middle panel shows the noiseless LDS SVAE predictions given
the data up to the vertical line, while the bottom panel shows the corresponding latent states.

(a) Predictions after 200 training epochs. (b) Predictions after 1100 training epochs.

Figure 9. As in Figure 8 but with a higher-resolution image sequence.

(a) Prediction given one frame of data. (b) Prediction given 5 frames of data.

Figure 10. As in Figure 8 but showing predictions given different data prefixes.
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Figure 12. Mouse depth video acquisition. A freely-behaving mouse is recorded from above with a depth camera. The mouse position
and orientation are tracked and the mouse body depth image is extracted, as shown in each inset. Our models are applied to these
extracted image sequences after some filtering and downsampling.
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to illustrate that the learned manifold naturally represents
smooth variation in the mouse’s pose, Figure 14 shows im-
ages generated from regular lattices on random 2D sub-
spaces of the latent space.

While the VAE can accurately model the marginal distri-
bution on each image, to model entire depth videos jointly
we use the SVAE to learn dynamics in the latent space.
To show that a Gaussian linear dynamical system (LDS)
can accurately represent these latent space dynamics, we
fit an LDS SVAE to the depth video sequences. Figure 15
shows predictions from this model over 1-second horizons,
illustrating that the LDS SVAE retains the flexible image
modeling capabilities of the VAE while additionally mod-
eling smooth dynamics that can generate plausible video
sequences.

Finally, because latent linear dynamics paired with the
nonlinear image model can accurately represent the depth
videos over short timescales, by extending the latent dy-
namics to a switching LDS (SLDS) we can discover dis-
tinct dynamical modes to represent the syllables of behav-
ior. Figure 16 shows some of the discrete states that arise
from fitting an SLDS SVAE with 30 discrete states to the
depth video data. The discrete states that emerge show a
natural clustering of short-timescale patterns into behav-
ioral units. Thus the SLDS SVAE provides an interpretable,
structured representation of behavioral patterns.

7. Conclusion
Structured variational autoencoders (SVAEs) provide a
new set of tools for probabilistic modeling that leverage
both graphical models and deep learning techniques. By
building on variational autoencoders and neural network ar-
chitectures, SVAEs can learn features and bottom-up infer-
ence networks automatically and represent complex high-
dimensional data. By enabling the latent probabilistic mod-
els to be expressed in terms of graphical models, exponen-
tial families, and hierarchical structures, SVAEs also allow
powerful modeling and algorithmic tools to be applied, in-
cluding efficient natural gradient computations, graphical
message passing, priors that encourage sparsity or repre-
sent domain knowledge, and discrete latent random vari-
ables. Furthermore, these structured latent representations
can provide both interpretability and tractability for non-
inference tasks, such as planning or control. Finally, be-
cause SVAE learning fits in the standard variational opti-
mization framework, many recent advances in neural net-
work optimization (Martens & Grosse, 2015) and vari-
ational inference (Burda et al., 2015) can be applied to
SVAEs.
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(a) Entering a rear

(b) Grooming

(c) Extension into running

(d) Fall from rear

Figure 16. Examples of behavior states inferred from depth video. For each state, four example frame sequences are shown, including
frames during which the given state was most probable according to the variational distribution on the hidden state sequence. Each frame
sequence is padded on both sides, with a square in the lower-right of a frame depicting that the state was active in that frame. The frame
sequences are temporally subsampled to reduce their length, showing one of every four video frames. Examples were chosen to have
durations close to the median duration for that state.
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