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The development of advanced optical methods has played a

key role in propelling progress in neurobiology. Genetically-

encoded fluorescent molecules found in nature have enabled

labeling of individual neurons to study their physiology and

anatomy. Here we discuss the recent use of both native and

synthetic optical highlighter proteins to address key problems

in neurobiology, including questions relevant to synaptic

function, neuroanatomy, and the organization of neural circuits.
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Introduction
GFP and other conventional fluorescent proteins have had

a tremendous impact on biology, and their subsequent

development into optical highlighters (photoactivatable,

photoconvertible, and photoswitchable fluorescent

proteins) has opened even more avenues of experimen-

tation. Respectively, these molecules are initially synthes-

ized as molecules lacking or having low fluorescence,

molecules initially fluorescing at wavelengths other than

their ‘activated’ wavelength, and molecules exhibiting

fluorescence which can be switched ‘on’ and ‘off’ repeat-

edly. These features enable experiments not possible

through conventional photobleaching of constitutively

fluorescent proteins: by definition, photobleaching exper-

iments track the properties of those molecules not subject

to the photobleaching itself, whereas optical highlighting

enables researchers to track precisely those molecules that

have been photostimulated. Recounting the >20 variations

of these molecules is outside the purview of this review,

but interested readers are directed to reviews detailing

their characteristics [1,2].
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Optical highlighters at the synapse
Chemical and electrical stimulation protocols induce

defined forms of plasticity in vitro whose in vivo correlates

are thought to instantiate network-level processes such as

learning and memory. These experimental manipulations

trigger both local alterations in protein translation, local-

ization and biochemical activity and neuron-wide changes

in transcription; together these events respecify the mol-

ecular landscape within individual synapses, culminating

in altered synapse anatomy and function [3–5].

The use of live imaging techniques has promised to

enable visualization of the anatomic and molecular

changes coincident with the induction of synaptic

plasticity in real-time. However, many of the techniques

traditionally deployed by researchers — such as the use of

GFP-fusion proteins to track single molecules — do not

afford sufficient temporal or spatial resolution to effec-

tively address questions about molecular dynamics at

single synapses on the timeframes relevant to plasticity.

By conferring tight control over molecular labeling both

in space and in time, optical highlighters have circum-

vented many of the technical limitations of conventional

approaches, enabling key experiments to characterize

synapses and the individual molecules within them.

For example, the observation that isolated synapses on a

single neuron exhibit distinct functional properties

suggests that the anatomic structure of dendritic

spines — whose bulbuous heads are connected to the

dendritic shaft by narrow necks only a few hundred

nanometers across — may act as electrical or chemical

compartments, enabling the spine to act as an isolated

computational unit [6]. By using multiphoton techniques

to photoactivate PA-GFP within individual spines in

hippocampal slice culture and then monitoring the rate

of PA-GFP exit into the dendrite, Bloodgood and Sabatini

[7] could establish that spines are diffusionally coupled to

the dendritic shaft (Figure 1). Further, by manipulating

levels of electrical activity in the slice and then photo-

activating PA-GFP within spines they showed that

degree of effective continuity between spines and den-

drites could be dynamically altered [7].

The observation of regulated diffusional coupling be-

tween the spine head and the dendrite suggests that

molecular mediators of plasticity may be differentially

trapped within or released from spines in response to

trans-synaptic cues [8]. As PA-GFP diffusion may not

reflect the biophysics of native spine-localized mol-

ecules, researchers have measured the diffusion con-

stants of various synaptic molecules fused with optical
urobiology, Curr Opin Neurobiol (2011), doi:10.1016/j.conb.2011.11.007
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Using PA-GFP to measure diffusional coupling between spines and dendrites. (a) Constructs expressing DsRed and PA-GFP were biolistically

delivered to pyramidal neurons in hippocampal slice culture. Multiphoton imaging reveals dendrites and individual dendritic spines (yellow arrow).

Localized photoactivation of PA-GFP through targeted illumination of the spine with 710 nm light effectively photoconverts PA-GFP as revealed by a

linescan through the spine and the adjacent dendrite (b, see dashed line in (b) for region of linescan, yellow arrow in (b) is time of photoconversion). By

quantitating the fluorescence transient and fitting the decay to a single exponential (c) one can determine the tauequ, the time constant of diffusional

equilibration across the spine neck. By using PA-GFP as a diffusional probe in this manner on many spines (e.g. d–f), Bloodgood et al. could determine

that most dendritic spines are diffusionally coupled to the parent dendrite, but their individual diffusion constants vary widely (compare c and d) and

are regulated by activity.

Images courtesy of Brenda Bloodgood and Bernardo Sabatini (Harvard University).
highlighters. Although the molecular weight of fusion

proteins significantly differs from that of the native

proteins, diffusion coefficients are only weakly related

to total molecular weight (approx. MW1/3) [9], enabling

fusion proteins to provide an adequate estimate. Several

groups have fused PA-GFP to PSD-95, a core protein

within the postsynaptic density (PSD) whose local con-

centration may scale with synapse size and strength

[9,10�,11�,12�,13��]. Photoactivation of PSD-95-PA-

GFP in spines in vivo has revealed that PSD-95 leaves

unstimulated synpases on timescales of 10 s of minutes to

hours (instead of seconds as measured for free PA-GFP)

and that this rate increases in response to activity.

Highlighter proteins have also been fused with other

adapter proteins, enzymes and ion channels resident in

synaptic spines, including Shank2, Shank3, CaMKIIa,

CaMKIIb, GluR2, stargazin, Ras, Rho, and Cdc42

[10�,14�,15�,16,17] revealing a diversity of diffusion rates

that constrain molecular models of plasticity. These

experiments have also shown that the spine concen-

tration of certain molecules (PSD-95, CaMKII) scales

with spine size. Importantly, while protein diffusion may

facilitate the spread of signals from activated spines to

adjacent spines (as is the case for PSD-95), in at least
Please cite this article in press as: Datta SR, Patterson GH. Optical highlighter molecules in ne
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some cases diffusion may also promote enzyme inacti-

vation. For example, PA-GFP-tagged cdc42 diffuses

rapidly out of activated spines, but (as revealed by 2P-

FLIM) its enzymatic activity is disabled upon entry into

the dendrite [15�].

Optical highlighters have also been used to probe actin

dynamics within spines, where actin plays a critical role in

synaptic function by acting both as a tether (through

interactions with signaling molecules) and as a strut

[18]. Expression and photoactivation within spines of

PA-GFP-b-actin fusion proteins in hippocampal neurons

revealed two populations of filamentous F-actin: a tread-

milling pool of actin that flows from the spine periphery

toward the center, and a stable pool of actin at the spine

base whose size is proportional to the size of the spine

itself [12�,13��]. Stimulation via single spine uncaging of

MNI-glutamate causes formation of a third unlocalized

pool of actin that may play a role in structural plasticity

[12�]. Photoconvertible protein actin chimeras have also

been used in a superresolution microscopy technique,

Photoactivatable Localization Microscopy (PALM) [19].

PALM and other molecular localization microscopy

techniques, such as fluorescence-PALM [20], Stochastic
urobiology, Curr Opin Neurobiol (2011), doi:10.1016/j.conb.2011.11.007
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Optical Reconstruction Microscopy (STORM) [21],

PALM with independent running acquisition (PALMIRA)

[22] and many others [23], rely on the precise localization of

single molecules by imaging and fitting their fluorescence

signals to two-dimensional Gaussian distributions. These

experiments revealed that most actin fibers are short

(<300 nm) and that the most dynamic fibers are irregularly

distributed within the spine in numbers proportional to

spine size [13��,24�]. As an alternative to direct actin

tagging, Izeddin et al. [25�] developed an actin binding

protein (ABP)-tdEosFP fusion for PALM with which they

have visualized actin redistribution after exposure to

AMPA agonists in hippocampal neurons [25�].

Like their postsynaptic counterparts, presynaptic boutons

have been proposed to serve as compartments that dif-

ferentially isolate second messengers and specific pools of

synaptic vesicles. By expressing and locally photoactivat-

ing PA-GFP fused to presynaptic active zone com-

ponents, an active exchange of presynaptic material

between adjacent boutons was observed; the exchange

of certain molecules (such as synapsin) was promoted by

activity, whereas the exchange of other molecules (such

as bassoon) was not [17,26]. Similar synaptophysin-Den-

dra2 experiments demonstrated that presynaptic vesicles

decorated with synaptophysin are also shared in ‘packets’

between adjacent presynaptic boutons [27]. These results

indicate that local exchange of multiple components

occurs within presynaptic structures, and that optical

highlighters afford sufficient temporal and spatial resol-

ution to track this process.

Tracking translation and transcription with
highlighters
In addition to enabling molecule tracking at the synapse,

optical highlighters can enable real-time tracking of de novo
protein synthesis. Certain forms of synaptic plasticity likely

require the local translation of specific mRNAs into protein

via synthetic machinery located within the dendrite

[28,29]. Although pharmacological and molecular studies

(often utilizing pulse-chase approaches) have strongly

suggested that protein translation both occurs locally and

may be causally involved in synaptic plasticity, visualiza-

tion of this process has been difficult. The generation of

translational reporters consisting of the cDNAs for two-

color photoconvertible proteins fused to the UTRs of

translationally regulated messages has facilitated the

identification of both the signaling pathways that impinge

upon the local translational machinery and the cis-acting

elements that confer translational regulation upon specific

messages. In these experiments typically a photoconver-

tible fluor such as Kaede is converted to its active red color,

and then the stimulus-induced rate of translation of the

reporter is revealed as de novo green fluorescence. This

strategy has been used to examine the dendrite-specific

translation of Kv1.1, CaMKII and Lypla1, and the axon-

specific translation of b-actin [30–37]. Recently Martin and
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colleagues used a Sensorin-Dendra2 reporter to test

synapse-specific mRNA translation in a culture system

in which single, defined synapses between Aplysia sensory

and motor neurons can be both manipulated and imaged

[38��]. These experiments demonstrated that stimuli

known to initiate facilitation (such as five pulses of ser-

otonin) trigger synapse-specific translation, whereas

stimuli that are ineffective (such as a single pulse of

serotonin, or a pulse of FMRFamide) fail to generate

new protein. It has also recently been observed that certain

forms of synaptic plasticity (such as homeostatic plasticity

[39]) may require targeted protein degradation; because

photoconversion allows photoconvertible proteins to be

used as optical pulse-chase reagents, these molecules can

track stimulus-induced protein destruction. For example,

degradation reporters have been generated in which PA-

GFP is fused to a variety of protein motifs that can target

peptides to the proteasome, and used to show that the

chronic manipulation of activity can alter dendritic protein

turnover [34,35].

Optical highlighters have also been used to reveal mech-

anisms of new gene expression, which is thought to be

essential to the induction of synaptic plasticity over long

time scales [36,37]. This process canonically involves

recruitment of cellular signal transduction molecules that

culminate in the regulation of transcription factors in the

nucleus. However, it has recently been suggested that

some transcription factors are held in abeyance in the

dendrite, but that upon stimulation these factors are

released and imported into the nucleus where they alter

gene expression to promote synaptic modification [40].

For example, in the Aplysia system the transcription

factor CREB2 has been suggested to translocate from

dendrites to the nucleus, where in response to specific

types of synaptic stimulation it initiates new gene expres-

sion required for long term depression. By tagging

CREB2 with Dendra2, Lai et al. [41] demonstrated that

CREB2 translocates to the nucleus in response to FMRF-

amide in an importin-dependent manner [41]. Similarly,

tagging of the p65 subunit of NF-kB with PA-GFP has

been used to demonstrate that dendritically localized NF-

kB is actively transported from the synapse to the nucleus

[42].

Axonal transport and long range protein
movement
The long distances between the soma and the tips of an

axon present challenges to the cell in moving proteins to

and from these distal points. In addition to translating

mRNAs at peripheral sites (as discussed earlier), neurons

deliver proteins to axons via least three other mechan-

isms, each of which has been clarified through the use of

optical highlighter-cargo fusion proteins. Neurofilament

fusion proteins, for instance, have been shown to move

along microtubules [43] and rely on myosin Va to keep

them on microtubule tracks [44]. Fusions of at least two
urobiology, Curr Opin Neurobiol (2011), doi:10.1016/j.conb.2011.11.007
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soluble cytosolic proteins, synapsin and CamKII, have

been found to be transported via a microtubule-based

mechanism in which large multimeric complexes interact

with motor proteins [45�]. Diffusion can also be a primary

mode of transport. For instance, highlightable fusions of

the microtubule binding protein tau undergo rapid bind-

ing to and unbinding from microtubules during transit to

the end of an axon, with transport kinetics indicative of

free diffusion to the tip of the neurite [46,47]. Fusions of

even slowly diffusing transmembrane proteins, such as

the beta-adrenoceptor [48] and voltage-gated potassium

channel isoforms 1.3, 1.4, and 2.1 [49], have been shown

to move by this mode. These studies of diffusive mech-

anisms have particularly benefited from using highlight-

ing methods since measurements can be made at many

distal points in the cell in addition to the irradiation spot.

Consequently, mobility fraction and diffusion coefficient

maps over large areas of the membrane and various axon

segments can be easily established.

Finally, optical highlighters are also well suited for study-

ing trafficking in the secretory pathway. Since new

proteins are often continuously produced over the course

of an experiment, photoactivated or photoconverted pools

effectively provide a time stamp for a given population of

molecules. Transport studies of UNC-2, the C. elegans
voltage-gated calcium channel, CaV2, found that a newly

discovered endoplasmic reticulum (ER) localized chaper-

one, CALF-1, is required in conjunction with a calcium

channel subunit, alpha2 delta, for proper exit of UNC-2

from the ER [50]. Photoconverted (and thus time

stamped) Dendra2-tagged UNC-2 exhibited transport

from the ER to synapses, but only in the presence of

calf-1, indicating that preexisting protein within the ER

exits through interactions with this newly described cha-

perone.

Cell fate mapping
Mapping the fates of individual cells or small numbers of

cells during development requires the ability to intro-

duce a label into a sparse number of cells at a specific

point in time. Traditionally this has been achieved

through laborious single cell methods like DNA electro-

poration, through the use of genetic chimeras, or through

clever genetic approaches such as MARCM and MADM

[51]. However, these physical or genetic methods are

often impractical or impossible (i.e. because of physical

access issues or the absence of effective mitotic recom-

bination in the chosen model organism). The ability to

generate focal signals with high contrast ratios through

precision photoactivation — particularly via multipho-

ton methods — potentially circumvents these limita-

tions, and has led to the widespread use of optical

highlighters to track cell fates during development. This

approach was first used to track the fate of neural crest

precursors in chick embryos; chicks were electroporated

in vivo with plasmids expressing PA-GFP under the
Please cite this article in press as: Datta SR, Patterson GH. Optical highlighter molecules in ne
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control of a ubiquitous promoter, and then single neural

crest cells (NCCs, located on the dorsal surface of the

neural plate) were photoactivated and imaged [52].

Since this initial demonstration, a number of different

highlighters have been successfully deployed in the chick

[52–57], zebrafish [58,59,60��,61�,62], xenopus [63], ciona

intestinalis [64��] and in mammals [52,54,57,61�,63,65,66]

to track the fates of neural precursors during develop-

ment. These experiments have correlated the initial

positions of neural precursors with the final positions of

differentiated neurons [52,54,57,61�], visualized inter-

actions between migrating neurons [65], assessed pro-

liferation during migration [57,65], followed the fate of

cells during metamorphosis [64��] and tested the role of

individual signaling molecules and transcription factors in

cell migration processes [54,63,66]. By restricting the

pattern of optical highlighter expression through the

use of cell-type specific promoters researchers can pre-

cisely characterize the tracked neuron’s function. For

example, interneuron subtype-specific promoters driving

Kaede expression in zebrafish have been used to address

the relative role of CiD and MCoD interneuron types in

fast and slow forms of swimming, respectively [61�].
Furthermore, a combinatorial technique called BAP-

TISM, which combines promoter-specific expression of

a photoconvertible fluorescent protein (huc::kaede, for

example) with EGFP expression under the control of a

second cell-type specific promoter ( p2x3b::egfp and trpa1-
b::egfp, for examples), has enabled researchers to birthdate

multiple different cell types was enabled within a specific

pool of neurons (Figure 2) [60��].

Circuit mapping
Freely diffusing optical highlighters not targeted to

specific subcellular compartments have been used to

great advantage in measuring diffusional coupling be-

tween spines and dendrites (see above) [7]. To a first

approximation, highlighted molecules within any cyto-

plasmic compartment of the neuron have free access to

the rest of the neuron. Because the anatomy of the neuron

is regionally specialized based upon connectivity — with

input-receiving dendrites spatially segregated from

output-transmitting axons — researchers have used

photoactivation methods to focally activate a protein

within the dendrite or axon and then utilize its de novo

fluorescence to visualize (via diffusion) the contiguous

cell bodies, axonal arbors, and dendrites. While labeling is

restricted to contiguous structures within a given neuron,

the complete morphology of targeted neurons and poten-

tially the direction and nature of information flow (at least

as constrained by anatomy) within a neural circuit can be

revealed with this approach.

This strategy was first deployed in a paper in which Kaede

was expressed under the control of the neural HuC

promoter in zebrafish followed by focal photoconversion
urobiology, Curr Opin Neurobiol (2011), doi:10.1016/j.conb.2011.11.007
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Figure 2
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BAPTISM allows birthdate analysis of genetically marked subpopulations of neurons. (a) Expression (using different drivers) of Kaede (green) and a

GFP marker to label specific populations of neurons (green) has all cells initially in a green state; after photoconversion, those cells that co-expressed

Kaede and the marker are yellow, while those that expressed Kaede alone are red. Newly born cells are green. After a second round of

photoconversion, cells that are in the GFP-expressing genetically marked population are yellow, whereas those that are GFP-negative are red. (b)

Example use of BAPTISM in zebrafish sensory neurons. Kaede is expressed under control of a general neural promoter, and GFP under the control of a

promoter for the gene trpa1b. After a single round of photoconversion and a delay period, newly developed cells can be identified based upon green

fluorescence (upper right panel, see white dots). To determine whether these cells express trpa1b, a second round of photoconversion was performed;

because the resultant cells are red (and not yellow), these cells do not express trpa1b (lower right).

Images and cartoon courtesy of Sophie Caron and Alex Schier (Harvard University).
to reveal the complete anatomy of targeted trigeminal

neurons and Rohan-Beard cells in the ventral spinal cord

[67]. Aramaki et al. [59] performed a similar experiment in

zebrafish, but with a twist: by using the ‘rewritable’

photoswitchable fluor Dronpa (expressed in neurons

using the Gal4–UAS system), these researchers were able

to interrogate a targeted neuron’s anatomy, erase the

fluorescence, and then target and image a second neuron

(and so on with multiple neurons in series) [59]. In this

iterative manner, structural features of a number of

different neurons presumed to be within a single neural

network were identified.
Please cite this article in press as: Datta SR, Patterson GH. Optical highlighter molecules in ne

www.sciencedirect.com 
While these two proof-of-principle papers demonstrated

that optical highlighters could be used as long-range

neural tracers, subsequent papers in the fruit fly Droso-

phila melanogaster illustrate the power of this approach to

dissect the structure and function of behaviorally relevant

neural circuits. One such circuit is responsible for sexually

dimorphic behaviors in response to the pheromone cis-

vaccenyl acetate (cVA), which (in particular contexts)

elicits aversive behaviors in males but is attractive to

females [68]. To address whether differences in down-

stream circuits are responsible for sexually dimorphic

responses to cVA, Datta et al. [69��] expressed PA-GFP
urobiology, Curr Opin Neurobiol (2011), doi:10.1016/j.conb.2011.11.007
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in most projection neurons in the antennal lobe, and then

took advantage of the spatial specificity afforded by

multiphoton techniques to photoactivate the PA-GFP

specifically within the DA1 glomerulus; the PA-GFP then

diffused, labeling the connected cell bodies and revealing

sexual dimorphism in the DA1 projection neuron axonal

arbors (Figure 3) [69��]. Furthermore, the induced fluor-

escence enabled electrophysiological characterization of

DA1 projection neurons via cell-attached recordings.

Because this approach depends upon the inherent diffu-

sional characteristics of PA-GFP, the total neurite length

that can be traced is limited, and effective tracing requires

photoactivation of a significant amount of PA-GFP

(through repeated cycles of activation over relatively large

target regions). These constraints have been partially

circumvented through the development of two variants

of PA-GFP (C3PA and SPA) that exhibit improved appar-

ent rates of diffusion in vivo [70��]. By expressing C3PA

and SPA in neurons potentially connected in a circuit, Ruta

et al. [70��] traced a single neuron and identified its axonal

arbor, and then irradiated the newly labeled axonal arbor,

thereby taking advantage of the spatial overlap with the
Please cite this article in press as: Datta SR, Patterson GH. Optical highlighter molecules in ne
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connected dendritic spines to highlight the downstream

neuron (Figure. 3). By iteratively repeating this process, a

behaviorally relevant neural circuit was traced across

multiple synapses and through multiple neurons [70��].

As work in neural circuits becomes increasingly focused

on interrogating the role of individual neurons in driving

behaviors, researchers are finding new roles for optical

highlighter proteins in disambiguating functionally

relevant neurons from bystander cells. For example, a

common difficulty is that the genetic drivers that are used

to functionally manipulate the activity of neurons

promote gene expression within large numbers of cells,

making it difficult to identify the particular neurons

responsible for a specific behavior. Claridge-Chang

et al. used optical highlighters to identify which subset

of cells labeled by their driver was relevant to behavior on

the basis of connectivity revealed by targeted photoacti-

vation of specific neurons [71��]. Similarly, a number of

researchers have begun co-expressing various photocon-

vertible proteins along with optogenetic reagents; optical

stimuli then both trigger changes in electrical activity via

the light-gated channel, and photoconvert and label the
urobiology, Curr Opin Neurobiol (2011), doi:10.1016/j.conb.2011.11.007
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stimulated cells, enabling posthoc verification of their

identity [72�,73�,74�]. Photoconvertible fluors are thus

proving to be useful adjuncts in optogenetic experiments

aimed at testing neural function.

Cell and organelle continuities
Similar to mapping circuits, the advantages of an optical

highlighter become apparent when determining organelle

continuities as well as both intracellular and intercellular

continuities. Axonal regeneration [75] has been confirmed

by photoconverting freely diffusing protein either in the

cell body or distal axon and monitoring the presence of red

and green signal mixtures. Continuity between cells has

been established by observing photoconverted KikGR

moving bidirectionally into neighboring cells within the

neural crest of chick embryos via cytoplasmic bridges [76].

Finally, axon degeneration has been confirmed by high-

lighting fragmented axon segments to ensure that sub-

sequent re-fusion of fragments did not take place [77].

Summary and outlook
Some of the experiments discussed here represent

approaches that are difficult or impossible with conven-

tional fluorescent protein imaging, demonstrating that

optical highlighters have moved from being neat little

fluorescent protein tricks to bona fide neurobiology tools.

Yet, the challenges of imaging in the nervous system will

likely require further optimization of these molecules,

with emphasis on brightness, contrast, photostability,

monomeric behavior, red-shifted wavelengths, improved

folding efficiency, faster folding kinetics, and higher

photoactivation quantum efficiency. Improvements in

any and all of these parameters will assist in neurobiology

experiments that seem to be delving deeper into tissue,

imaging with faster kinetics, and observing over longer

timescales. If history provides any reasonable forecast, the

rapid development of highlighter molecules over the past

10 years is likely to continue and provide tools to facilitate

new and innovative approaches.
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